Connecting Python with Teradata using Teradata module

最后都变了- 提交于 2019-11-28 18:28:25

There are a number of ways to connect to Teradata and export table to Pandas. Here are three:

Using teradata module

# You can install teradata via PIP: pip install teradata
# to get a list of your odbc drivers names, you could do: teradata.tdodbc.drivers
# You don’t need of coffee driver if using method='rest'.     
# See sending data from df to teradata for connection example 

import teradata
import pandas as pd

host,username,password = 'HOST','UID', 'PWD'
#Make a connection
udaExec = teradata.UdaExec (appName="test", version="1.0", logConsole=False)


with udaExec.connect(method="odbc",system=host, username=username,
                            password=password, driver="DRIVERNAME") as connect:

    query = "SELECT * FROM DATABASEX.TABLENAMEX;"

    #Reading query to df
    df = pd.read_sql(query,connect)
    # do something with df,e.g.
    print(df.head()) #to see the first 5 rows

Using pyodbc module

import pyodbc

 #You can install teradata via PIP: pip install pyodbc
 #to get a list of your odbc drivers names, you could do: pyodbc.drivers()

#Make a connection
link = 'DRIVER={DRIVERNAME};DBCNAME={hostname};UID={uid};PWD={pwd}'.format(
                      DRIVERNAME=DRIVERNAME,hostname=hostname,  
                      uid=username, pwd=password)
with pyodbc.connect(link,autocommit=True) as connect:

    #Reading query to df
    df = pd.read_sql(query,connect)

Using sqlalchemy Module

 #You can install sqlalchemy via PIP: pip install sqlalchemy-teradata
 #Note: It is not pip install sqlalchemy. If you already have sqlalchemy, you still need sqlalchemy-teradata to get teradata dialects

from sqlalchemy import create_engine

#Make a connection

link = 'teradata://{username}:{password}@{hostname}/?driver={DRIVERNAME}'.format(
               username=username,hostname=hostname,DRIVERNAME=DRIVERNAME)

with create_engine(link) as connect:

    #Reading query to df
    df = pd.read_sql(query,connect)

There is a fourth way, using giraffez module. I enjoy using this module as it come with MLOAD, FASTLOAD, BULKEXPORT etc. The only issue for beginners is its requirements (e.g C/C++ compiler ,Teradata CLIv2 and TPT API headers/lib files).

Note: Updated 13-07-2018, using of context manager to ensure closing of sessions

Update: 31-10-2018: Using teradata to send data from df to teradata

We can send data from df to Teradata. Avoiding 'odbc' 1 MB limit and odbc driver dependency, we can use 'rest' method. We need host ip_address, instead of driver argument. NB: The order of columns in df should match the order of columns in Teradata table.

import teradata
import pandas as pd

# HOST_IP can be found by executing *>>nslookup viewpoint* or *ping  viewpoint* 
udaExec = teradata.UdaExec (appName="test", version="1.0", logConsole=False) 
with udaExec.connect(method="rest",system="DBName", username="UserName",
                      password="Password", host="HOST_IP_ADDRESS") as connect:

    data = [tuple(x) for x in df.to_records(index=False)]

    connect.executemany("INSERT INTO DATABASE.TABLEWITH5COL") 
                values(?,?,?,?,?)",data,batch=True)

Using 'odbc', you have to chunk your data to less than 1MB chunks to avoid "[HY001][Teradata][ODBC Teradata Driver] Memory allocation error" error: E.g.

import teradata
import pandas as pd
import numpy as np

udaExec = teradata.UdaExec (appName="test", version="1.0", logConsole=False)

with udaExec.connect(method="odbc",system="DBName", username="UserName",
                      password="Password", driver="DriverName") as connect:

    #We can divide our huge_df to small chuncks. E.g. 100 churchs
    chunks_df = np.array_split(huge_df, 100)

    #Import chuncks to Teradata
    for i,_ in enumerate(chunks_df):

        data = [tuple(x) for x in chuncks_df[i].to_records(index=False)]
        connect.executemany("INSERT INTO DATABASE.TABLEWITH5COL values(?,?,?,?,?)",data,batch=True)
Chaitanya Pavan Kumar Kothamas

Download the Teradata Python module and python pyodbc.pyd from internet. Install using cmd install setup.py.

Here is the sample script for connecting to teradata and extracting data:

import teradata
import pyodbc
import sys



udaExec = teradata.UdaExec (appName="HelloWorld", version="1.0",
        logConsole=False)

session = udaExec.connect(method="odbc", dsn="prod32",
        username="PRODRUN", password="PRODRUN");

i = 0
REJECTED = 'R';

f = file("output.txt","w");sys.stdout=f

cursor =  session.cursor();

ff_remaining = 0;

cnt = cursor.execute("SELECT  SEQ_NO,FRQFBKDC,PNR_RELOC FROM ttemp.ffremaining ORDER BY 1,2,3 ").rowcount;
rows = cursor.execute("SELECT  SEQ_NO,FRQFBKDC,PNR_RELOC FROM ttemp.ffremaining ORDER BY 1,2,3 ").fetchall();


for i in range(cnt):
    ff_remaining = cursor.execute("select count(*) as coun from  ttemp.ffretroq_paxoff where seq_no=? and status <> ?",(rows[i].seq_no,REJECTED)).fetchall();
    print ff_remaining[0].coun, rows[i].seq_no, REJECTED;
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!