Logging training and validation loss in tensorboard

我只是一个虾纸丫 提交于 2019-11-28 16:41:51
mrry

There are several different ways you could achieve this, but you're on the right track with creating different tf.summary.scalar() nodes. Since you must explicitly call SummaryWriter.add_summary() each time you want to log a quantity to the event file, the simplest approach is probably to fetch the appropriate summary node each time you want to get the training or validation accuracy:

accuracy = tf.reduce_mean(correct)

training_summary = tf.summary.scalar("training_accuracy", accuracy)
validation_summary = tf.summary.scalar("validation_accuracy", accuracy)


summary_writer = tf.summary.FileWriter(...)

for step in xrange(NUM_STEPS):

  # Perform a training step....

  if step % LOG_PERIOD == 0:

    # To log training accuracy.
    train_acc, train_summ = sess.run(
        [accuracy, training_summary], 
        feed_dict={images : training_set.images, labels : training_set.labels})
    writer.add_summary(train_summ, step) 

    # To log validation accuracy.
    valid_acc, valid_summ = sess.run(
        [accuracy, validation_summary],
        feed_dict={images : validation_set.images, labels : validation_set.labels})
    writer.add_summary(valid_summ, step)

Alternatively, you could create a single summary op whose tag is a tf.placeholder(tf.string, []) and feed the string "training_accuracy" or "validation_accuracy" as appropriate.

stillPatrick

Another way to do it, is to use a second file writer. So you are able to use the merge_summaries command.

train_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/train',
                                      sess.graph)
test_writer = tf.summary.FileWriter(FLAGS.summaries_dir + '/test')
tf.global_variables_initializer().run()

Here is the complete documentation. This works for me fine : TensorBoard: Visualizing Learning

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!