Fast algorithm for repeated calculation of percentile?

与世无争的帅哥 提交于 2019-11-28 16:32:44
Nikita Rybak

You can do it with two heaps. Not sure if there's a less 'contrived' solution, but this one provides O(logn) time complexity and heaps are also included in standard libraries of most programming languages.

First heap (heap A) contains smallest 75% elements, another heap (heap B) - the rest (biggest 25%). First one has biggest element on the top, second one - smallest.

  1. Adding element.

See if new element x is <= max(A). If it is, add it to heap A, otherwise - to heap B.
Now, if we added x to heap A and it became too big (holds more than 75% of elements), we need to remove biggest element from A (O(logn)) and add it to heap B (also O(logn)).
Similar if heap B became too big.

  1. Finding "0.75 median"

Just take the largest element from A (or smallest from B). Requires O(logn) or O(1) time, depending on heap implementation.

edit
As Dolphin noted, we need to specify precisely how big each heap should be for every n (if we want precise answer). For example, if size(A) = floor(n * 0.75) and size(B) is the rest, then, for every n > 0, array[array.size * 3/4] = min(B).

A simple Order Statistics Tree is enough for this.

A balanced version of this tree supports O(logn) time insert/delete and access by Rank. So you not only get the 75% percentile, but also the 66% or 50% or whatever you need without having to change your code.

If you access the 75% percentile frequently, but only insert less frequently, you can always cache the 75% percentile element during an insert/delete operation.

Most standard implementations (like Java's TreeMap) are order statistic trees.

You can use binary search to do find the correct position in O(log n). However, shifting the array up is still O(n).

Here is a javaScript solution . Copy-paste it in browser console and it works . $scores contains the List of scores and , $percentilegives the n-th percentile of the list . So 75th percentile is 76.8 and 99 percentile is 87.9.

function get_percentile($percentile, $array) {
    $array = $array.sort();
    $index = ($percentile/100) * $array.length;
    if (Math.floor($index) === $index) {
         $result = ($array[$index-1] + $array[$index])/2;
    }
    else {
        $result = $array[Math.floor($index)];
    }
    return $result;
}

$scores = [22.3, 32.4, 12.1, 54.6, 76.8, 87.3, 54.6, 45.5, 87.9];

get_percentile(75, $scores);
get_percentile(90, $scores);

If you have a known set of values, following will be very fast:

Create a large array of integers (even bytes will work) with number of elements equal to maximum value of your data. For example, if the maximum value of t is 100,000 create an array

int[] index = new int[100000]; // 400kb

Now iterate over the entire set of values, as

for each (int t : set_of_values) {
  index[t]++;
}

// You can do a try catch on ArrayOutOfBounds just in case :)

Now calculate percentile as

int sum = 0, i = 0;
while (sum < 0.9*set_of_values.length) {
  sum += index[i++];
}

return i;

You can also consider using a TreeMap instead of array, if the values don't confirm to these restrictions.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!