Is there any connection between `a :~: b` and `(a :== b) :~: True`?

浪子不回头ぞ 提交于 2019-11-28 11:14:44

Yes, going between the two representations is possible (assuming the implementation of :== is correct), but it requires computation.

The information you need is not present in the Boolean itself (it's been erased to a single bit); you have to recover it. This involves interrogating the two participants of the original Boolean equality test (which means you have to keep them around at runtime), and using your knowledge of the result to eliminate the impossible cases. It's rather tedious to re-perform a computation for which you already know the answer!

Working in Agda, and using naturals instead of strings (because they're simpler):

open import Data.Nat
open import Relation.Binary.PropositionalEquality
open import Data.Bool

_==_ : ℕ -> ℕ -> Bool
zero == zero = true
suc n == suc m = n == m
_ == _ = false

==-refl : forall n -> (n == n) ≡ true
==-refl zero = refl
==-refl (suc n) = ==-refl n


fromProp : forall {n m} -> n ≡ m -> (n == m) ≡ true
fromProp {n} refl = ==-refl n

-- we have ways of making you talk
toProp : forall {n m} -> (n == m) ≡ true -> n ≡ m
toProp {zero} {zero} refl = refl
toProp {zero} {suc m} ()
toProp {suc n} {zero} ()
toProp {suc n} {suc m} p = cong suc (toProp {n}{m} p)

In principle I think you could make this work in Haskell using singletons, but why bother? Don't use Booleans!

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!