PCA

社会主义新天地 提交于 2019-11-28 10:35:05

PCA本质上是一个有损的特征压缩过程,但是我们期望损失的精度尽可能地少,也就是希望压缩的过程中保留最多的原始信息。要达到这种目的,我们希望降维(投影)后的数据点尽可能地分散。

基于这种思想,我们希望投影后的数据点尽可能地分散。而这种分散程度在数学上可以利用方差来表示。设降维后的特征为 A,也就是希望 Var(A) = 

${\sigma}_{k}(n)=\sum_{d|n}^{}{d}^{k}$

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!