问题
I am using SparkR:::map and my function returns a large-ish R dataframe for each input row, each of the same shape. I would like to write these dataframes as parquet files without 'collect'ing them. Can I map write.df over my output list? Can I get the worker tasks to write the parquet instead?
I now have a working. example. I am happy with this other than I did not expect the reduce to implicitly 'collect' as I wanted to write the resultant DF as Parquet.
Also, I'm not convinced that :::map actually does anything in parallel. Do I need always to call 'parallelise' as well?
#! /usr/bin/Rscript
library(SparkR, lib.loc="/opt/spark-1.5.1-bin-without-hadoop/R/lib")
source("jdbc-utils.R")
options(stringsAsFactors = FALSE)
# I dislike having these here but when I move them into main(), it breaks - the sqlContext drops.
assign("sc", sparkR.init(master = "spark://poc-master-1:7077",
sparkHome = "/opt/spark-1.5.1-bin-without-hadoop/",
appName = "Peter Spark test",
list(spark.executor.memory="4G")), envir = .GlobalEnv)
assign("sqlContext", sparkRSQL.init(sc), envir =.GlobalEnv)
#### MAP function ####
run.model <- function(v) {
x <- v$xs[1]
y <- v$ys[1]
startTime <- format(Sys.time(), "%F %T")
xs <- c(1:x)
endTime <- format(Sys.time(), "%F %T")
hostname <- system("hostname", intern = TRUE)
xys <- data.frame(xs,y,startTime,endTime,hostname,stringsAsFactors = FALSE)
return(xys)
}
# HERE BE THE SCRIPT BIT
main <- function() {
# Make unique identifiers for each run
xs <- c(1:365)
ys <- c(1:1)
xys <- data.frame(xs,ys,stringsAsFactors = FALSE)
# Convert to Spark dataframe for mapping
sqlContext <- get("sqlContext", envir = .GlobalEnv)
xys.sdf <- createDataFrame(sqlContext, xys)
# Let Spark do what Spark does
output.list <- SparkR:::map(xys.sdf, run.model)
# Reduce gives us a single R dataframe, which may not be what we want.
output.redux <- SparkR:::reduce(output.list, rbind)
# Or you can have it as a list of data frames.
output.col <- collect(output.list)
return(NULL)
}
回答1:
Assuming your data looks more or less like this:
rdd <- SparkR:::parallelize(sc, 1:5)
dfs <- SparkR:::map(rdd, function(x) mtcars[(x * 5):((x + 1) * 5), ])
and all columns have supported types you can convert it to the row-wise format:
rows <- SparkR:::flatMap(dfs, function(x) {
data <- as.list(x)
args <- list(FUN = list, SIMPLIFY = FALSE, USE.NAMES = FALSE)
do.call(mapply, append(args, data))
})
call createDataFrame
:
sdf <- createDataFrame(sqlContext, rows)
head(sdf)
## mpg cyl disp hp drat wt qsec vs am gear carb
## 1 18.7 8 360.0 175 3.15 3.44 17.02 0 0 3 2
## 2 18.1 6 225.0 105 2.76 3.46 20.22 1 0 3 1
## 3 14.3 8 360.0 245 3.21 3.57 15.84 0 0 3 4
## 4 24.4 4 146.7 62 3.69 3.19 20.00 1 0 4 2
## 5 22.8 4 140.8 95 3.92 3.15 22.90 1 0 4 2
## 6 19.2 6 167.6 123 3.92 3.44 18.30 1 0 4 4
printSchema(sdf)
## root
## |-- mpg: double (nullable = true)
## |-- cyl: double (nullable = true)
## |-- disp: double (nullable = true)
## |-- hp: double (nullable = true)
## |-- drat: double (nullable = true)
## |-- wt: double (nullable = true)
## |-- qsec: double (nullable = true)
## |-- vs: double (nullable = true)
## |-- am: double (nullable = true)
## |-- gear: double (nullable = true)
## |-- carb: double (nullable = true)
and simply use write.df
/ saveDF
.
Problem is you shouldn't use an internal API in the first place. One of the reasons it was removed in the initial release is not robust enough to be used directly. Not to mention it is still not clear if it will be supported or even available in the future. Just saying...
来源:https://stackoverflow.com/questions/33961103/writing-r-data-frames-returned-from-sparkrmap