Integrate 2D kernel density estimate

北慕城南 提交于 2019-11-28 09:29:35

Here is a way to do it using monte carlo integration. It is a little slow, and there is randomness in the solution. The error is inversely proportional to the square root of the sample size, while the running time is directly proportional to the sample size (where sample size refers to the monte carlo sample (10000 in my example below), not the size of your data set). Here is some simple code using your kernel object.

#Compute the point below which to integrate
iso = kernel((x1,y1))

#Sample from your KDE distribution
sample = kernel.resample(size=10000)

#Filter the sample
insample = kernel(sample) < iso

#The integral you want is equivalent to the probability of drawing a point 
#that gets through the filter
integral = insample.sum() / float(insample.shape[0])
print integral

I get approximately 0.2 as the answer for your data set.

cqcn1991

A direct way is to integrate

import matplotlib.pyplot as plt
import sklearn
from scipy import integrate
import numpy as np

mean = [0, 0]
cov = [[5, 0], [0, 10]]
x, y = np.random.multivariate_normal(mean, cov, 5000).T
plt.plot(x, y, 'o')
plt.show()

sample = np.array(zip(x, y))
kde = sklearn.neighbors.KernelDensity().fit(sample)
def f_kde(x,y):
    return np.exp((kde.score_samples([[x,y]])))

point = x1, y1
integrate.nquad(f_kde, [[-np.inf, x1],[-np.inf, y1]])

The problem is that, this is very slow if you do it in a large scale. For example, if you want to plot the x,y line at x (0,100), it would take a long time to calculate.

Notice: I used kde from sklearn, but I believe you can also change it into other form as well.


Using the kernel as defined in the original question:

import numpy as np
from scipy import stats
from scipy import integrate

def integ_func(kde, x1, y1):

    def f_kde(x, y):
        return kde((x, y))

    integ = integrate.nquad(f_kde, [[-np.inf, x1], [-np.inf, y1]])

    return integ

# Obtain data from file.
data = np.loadtxt('data.dat', unpack=True)
# Perform a kernel density estimate (KDE) on the data
kernel = stats.gaussian_kde(data)

# Define the number that will determine the integration limits
x1, y1 = 2.5, 1.5
print integ_func(kernel, x1, y1)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!