How to use recursion in creating a binary search algorithm

一世执手 提交于 2019-11-28 08:41:04

If you really want to use recursion, this should do it.

public static int binarySearch(int[] a, int target) {
    return binarySearch(a, 0, a.length-1, target);
}

public static int binarySearch(int[] a, int start, int end, int target) {
    int middle = (start + end) / 2;
    if(end < start) {
        return -1;
    } 

    if(target==a[middle]) {
        return middle;
    } else if(target<a[middle]) {
        return binarySearch(a, start, middle - 1, target);
    } else {
        return binarySearch(a, middle + 1, end, target);
    }
}

Here is an easier way of doing binary search:

public static int binarySearch(int intToSearch, int[] sortedArray) {

    int lower = 0;
    int upper = sortedArray.length - 1;

    while (lower <= upper) {

        int mid = lower + (upper - lower) / 2;

        if(intToSearch < sortedArray[mid]) 

            upper = mid - 1;

        else if (intToSearch > sortedArray[mid]) 

            lower = mid + 1;

        else 

            return mid;
    }

    return -1; // Returns -1 if no match is found
}

Following is a code sample extracted from here.

public class BinarySearch {

    public boolean find(int[] sortedValues, int value) {
        return search(sortedValues, value, 0, sortedValues.length - 1);
    }

    private boolean search(int[] sorted, int value, int leftIndex, int rightIndex) {

        // 1. index check
        if (leftIndex > rightIndex) {
            return false;
        }

        // 2. middle index
        int middle = (rightIndex + leftIndex) / 2;

        // 3. recursive invoke
        if (sorted[middle] > value) {
            return search(sorted, value, leftIndex, middle - 1);
        } else if (sorted[middle] < value) {
            return search(sorted, value, middle + 1, rightIndex);
        } else {
            return true;
        }
    }
}

You can find implementations of the below test cases against the above binary search implementation as well in the reference link.

1. shouldReturnFalseIfArrayIsEmpty()
2. shouldReturnFalseIfNotFoundInSortedOddArray()
3. shouldReturnFalseIfNotFoundInSortedEvenArray()
4. shouldReturnTrueIfFoundAsFirstInSortedArray()
5. shouldReturnTrueIfFoundAtEndInSortedArray()
6. shouldReturnTrueIfFoundInMiddleInSortedArray()
7. shouldReturnTrueIfFoundAnywhereInSortedArray()
8. shouldReturnFalseIfNotFoundInSortedArray()

A possible example is :

// need extra "helper" method, feed in params
   public int binarySearch(int[] a, int x) { 
      return binarySearch(a, x, 0, a.length - 1);
   }

   // need extra low and high parameters
   private int binarySearch(int[ ] a, int x,
         int low, int high) {
      if (low > high) return -1; 
      int mid = (low + high)/2;
      if (a[mid] == x) return mid;
      else if (a[mid] < x)
         return binarySearch(a, x, mid+1, high);
      else // last possibility: a[mid] > x
         return binarySearch(a, x, low, mid-1);
   }

Here you can check in C Binary Search, With and Without Recursion

Source : http://www.cs.utsa.edu/~wagner/CS3343/recursion/binsearch.html

Here is a algorithm which should get you going. Let your method signature be:

public boolean binarysearchRecursion(Array, begin_index,end_index, search_element)
  1. Check if your begin_index > end_index if YES then return false.
  2. Calculate mid_element for your input array.
  3. Check if your search_element is equal to this mid_element. if YES return true
  4. If mid_element > search_element Call your method with for range 0 - mid
  5. If mid_element < search_element Call your method with for range mid+1 - Length_of_Array

Also as @DwB said in his comment you are better using loop to get things done. Some problems are recursive in nature(Like binary tree problems). But this one is not one of them.

This is another way of doing recursion:

int[] n = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
@Test
public void testRecursiveSolution() {
    Assert.assertEquals(0, recursiveBinarySearch(1,n));
    Assert.assertEquals(15, recursiveBinarySearch(16,n));
    Assert.assertEquals(14, recursiveBinarySearch(15,n));
    Assert.assertEquals(13, recursiveBinarySearch(14,n));
    Assert.assertEquals(12, recursiveBinarySearch(13,n));
    Assert.assertEquals(11, recursiveBinarySearch(12,n));
    Assert.assertEquals(10, recursiveBinarySearch(11,n));
    Assert.assertEquals(9, recursiveBinarySearch(10,n));
    Assert.assertEquals(-1, recursiveBinarySearch(100,n));
}
private int recursiveBinarySearch(int n, int[] array) {
    if(array.length==1) {
        if(array[0]==n) {
            return 0;
        } else {
            return -1;
        }
    } else {
        int mid = (array.length-1)/2;
        if(array[mid]==n) {
            return mid;
        } else if(array[mid]>n) {
            return recursiveBinarySearch(n, Arrays.copyOfRange(array, 0, mid));
        } else {
            int returnIndex = recursiveBinarySearch(n, Arrays.copyOfRange(array, mid+1, array.length));
            if(returnIndex>=0) {
                return returnIndex+mid+1;
            } else {
                return returnIndex;
            }
        }
    }
}

While it doesn't return the index, this at least returns the idea of 'yes' or 'no' that something is in the collection:

public static boolean recursive(int[] input, int valueToFind) {
    if (input.length == 0) {
        return false;
    }

    int mid = input.length / 2;
    if (input[mid] == valueToFind) {
        return true;
    } else if (input[mid] > valueToFind) {
        int[] smallerInput = Arrays.copyOfRange(input, 0, mid);
        return recursive(smallerInput, valueToFind);
    } else if (input[mid] < valueToFind) {
        int[] smallerInput = Arrays.copyOfRange(input, mid+1, input.length);
        return recursive(smallerInput, valueToFind);
    }

    return false;
}

A recursion BinarySearch with break conditions in case you can not find the value you are looking for

public interface Searcher{
    public int search(int [] data, int target, int low, int high);
}

The Implementation

public class BinarySearch implements Searcher {

    public int search(int[] data, int target, int low, int high) {
        //The return variable
        int retorno = -1;
        if(low > high) return retorno;
        int middle = (high + low)/2;
        if(target == data[middle]){
            retorno = data[middle];
        }else if(target < data[middle] && (middle - 1 != high)){
            //the (middle - 1 != high) avoids beeing locked inside a never ending recursion loop
            retorno = search(data, target, low, middle - 1);
        }else if(target > data[middle] && (middle - 1 != low)){
            //the (middle - 1 != low) avoids beeing locked inside a never ending recursion loop
            retorno = search(data, target, middle - 1, high);
        }else if(middle - 1 == low || middle - 1 == high){
            //Break condition if you can not find the desired balue
            retorno =  -1;
        }
        return retorno;
    }
}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!