Equidistant points across Bezier curves

痞子三分冷 提交于 2019-11-28 06:36:36

distance between P_0 and P_3 (in cubic form), yes, but I think you knew that, is straight forward.

Distance on a curve is just arc length:

fig 1 http://www.codecogs.com/eq.latex?%5Cint_%7Bt_0%7D%5E%7Bt_1%7D%20%7B%20|P'(t)|%20dt

where:

fig 2 http://www.codecogs.com/eq.latex?P%27(t)%20=%20[%7Bx%27,y%27,z%27%7D]%20=%20[%7B%5Cfrac%7Bdx(t)%7D%7Bdt%7D,%5Cfrac%7Bdy(t)%7D%7Bdt%7D,%5Cfrac%7Bdz(t)%7D%7Bdt%7D%7D]

(see the rest)

Probably, you'd have t_0 = 0, t_1 = 1.0, and dz(t) = 0 (2d plane).

This is called "arc length" parameterization. I wrote a paper about this several years ago:

http://www.saccade.com/writing/graphics/RE-PARAM.PDF

The idea is to pre-compute a "parameterization" curve, and evaluate the curve through that.

enc_life

I know this is an old question but I recently ran into this problem and created a UIBezierPath extention to solve for an X coordinate given a Y coordinate and vise versa. Written in swift.

https://github.com/rkotzy/RKBezierMath

extension UIBezierPath {

func solveBezerAtY(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, y: CGFloat) -> [CGPoint] {

    // bezier control points
    let C0 = start.y - y
    let C1 = point1.y - y
    let C2 = point2.y - y
    let C3 = end.y - y

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = C3 - 3.0*C2 + 3.0*C1 - C0
    let B = 3.0*C2 - 6.0*C1 + 3.0*C0
    let C = 3.0*C1 - 3.0*C0
    let D = C0

    let roots = solveCubic(A, b: B, c: C, d: D)

    var result = [CGPoint]()

    for root in roots {
        if (root >= 0 && root <= 1) {
            result.append(bezierOutputAtT(start, point1: point1, point2: point2, end: end, t: root))
        }
    }

    return result
}

func solveBezerAtX(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, x: CGFloat) -> [CGPoint] {

    // bezier control points
    let C0 = start.x - x
    let C1 = point1.x - x
    let C2 = point2.x - x
    let C3 = end.x - x

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = C3 - 3.0*C2 + 3.0*C1 - C0
    let B = 3.0*C2 - 6.0*C1 + 3.0*C0
    let C = 3.0*C1 - 3.0*C0
    let D = C0

    let roots = solveCubic(A, b: B, c: C, d: D)

    var result = [CGPoint]()

    for root in roots {
        if (root >= 0 && root <= 1) {
            result.append(bezierOutputAtT(start, point1: point1, point2: point2, end: end, t: root))
        }
    }

    return result

}

func solveCubic(a: CGFloat?, var b: CGFloat, var c: CGFloat, var d: CGFloat) -> [CGFloat] {

    if (a == nil) {
        return solveQuadratic(b, b: c, c: d)
    }

    b /= a!
    c /= a!
    d /= a!

    let p = (3 * c - b * b) / 3
    let q = (2 * b * b * b - 9 * b * c + 27 * d) / 27

    if (p == 0) {
        return [pow(-q, 1 / 3)]

    } else if (q == 0) {
        return [sqrt(-p), -sqrt(-p)]

    } else {

        let discriminant = pow(q / 2, 2) + pow(p / 3, 3)

        if (discriminant == 0) {
            return [pow(q / 2, 1 / 3) - b / 3]

        } else if (discriminant > 0) {
            let x = crt(-(q / 2) + sqrt(discriminant))
            let z = crt((q / 2) + sqrt(discriminant))
            return [x - z - b / 3]
        } else {

            let r = sqrt(pow(-(p/3), 3))
            let phi = acos(-(q / (2 * sqrt(pow(-(p / 3), 3)))))

            let s = 2 * pow(r, 1/3)

            return [
                s * cos(phi / 3) - b / 3,
                s * cos((phi + CGFloat(2) * CGFloat(M_PI)) / 3) - b / 3,
                s * cos((phi + CGFloat(4) * CGFloat(M_PI)) / 3) - b / 3
            ]

        }

    }
}

func solveQuadratic(a: CGFloat, b: CGFloat, c: CGFloat) -> [CGFloat] {

    let discriminant = b * b - 4 * a * c;

    if (discriminant < 0) {
        return []

    } else {
        return [
            (-b + sqrt(discriminant)) / (2 * a),
            (-b - sqrt(discriminant)) / (2 * a)
        ]
    }

}

private func crt(v: CGFloat) -> CGFloat {
    if (v<0) {
        return -pow(-v, 1/3)
    }
    return pow(v, 1/3)
}

private func bezierOutputAtT(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, t: CGFloat) -> CGPoint {

    // bezier control points
    let C0 = start
    let C1 = point1
    let C2 = point2
    let C3 = end

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = CGPointMake(C3.x - 3.0*C2.x + 3.0*C1.x - C0.x, C3.y - 3.0*C2.y + 3.0*C1.y - C0.y)
    let B = CGPointMake(3.0*C2.x - 6.0*C1.x + 3.0*C0.x, 3.0*C2.y - 6.0*C1.y + 3.0*C0.y)
    let C = CGPointMake(3.0*C1.x - 3.0*C0.x, 3.0*C1.y - 3.0*C0.y)
    let D = C0

    return CGPointMake(((A.x*t+B.x)*t+C.x)*t+D.x, ((A.y*t+B.y)*t+C.y)*t+D.y)
}

// TODO: - future implementation
private func tangentAngleAtT(start: CGPoint, point1: CGPoint, point2: CGPoint, end: CGPoint, t: CGFloat) -> CGFloat {

    // bezier control points
    let C0 = start
    let C1 = point1
    let C2 = point2
    let C3 = end

    // The cubic polynomial coefficients such that Bez(t) = A*t^3 + B*t^2 + C*t + D
    let A = CGPointMake(C3.x - 3.0*C2.x + 3.0*C1.x - C0.x, C3.y - 3.0*C2.y + 3.0*C1.y - C0.y)
    let B = CGPointMake(3.0*C2.x - 6.0*C1.x + 3.0*C0.x, 3.0*C2.y - 6.0*C1.y + 3.0*C0.y)
    let C = CGPointMake(3.0*C1.x - 3.0*C0.x, 3.0*C1.y - 3.0*C0.y)

    return atan2(3.0*A.y*t*t + 2.0*B.y*t + C.y, 3.0*A.x*t*t + 2.0*B.x*t + C.x)
}

}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!