Ellipse around the data in MATLAB

[亡魂溺海] 提交于 2019-11-28 06:30:35

Consider the code:

%# generate data
num = 50;
X = [ mvnrnd([0.5 1.5], [0.025 0.03 ; 0.03 0.16], num) ; ...
      mvnrnd([1 1], [0.09 -0.01 ; -0.01 0.08], num)   ];
G = [1*ones(num,1) ; 2*ones(num,1)];

gscatter(X(:,1), X(:,2), G)
axis equal, hold on

for k=1:2
    %# indices of points in this group
    idx = ( G == k );

    %# substract mean
    Mu = mean( X(idx,:) );
    X0 = bsxfun(@minus, X(idx,:), Mu);

    %# eigen decomposition [sorted by eigen values]
    [V D] = eig( X0'*X0 ./ (sum(idx)-1) );     %#' cov(X0)
    [D order] = sort(diag(D), 'descend');
    D = diag(D);
    V = V(:, order);

    t = linspace(0,2*pi,100);
    e = [cos(t) ; sin(t)];        %# unit circle
    VV = V*sqrt(D);               %# scale eigenvectors
    e = bsxfun(@plus, VV*e, Mu'); %#' project circle back to orig space

    %# plot cov and major/minor axes
    plot(e(1,:), e(2,:), 'Color','k');
    %#quiver(Mu(1),Mu(2), VV(1,1),VV(2,1), 'Color','k')
    %#quiver(Mu(1),Mu(2), VV(1,2),VV(2,2), 'Color','k')
end


EDIT

If you want the ellipse to represent a specific level of standard deviation, the correct way of doing is by scaling the covariance matrix:

STD = 2;                     %# 2 standard deviations
conf = 2*normcdf(STD)-1;     %# covers around 95% of population
scale = chi2inv(conf,2);     %# inverse chi-squared with dof=#dimensions

Cov = cov(X0) * scale;
[V D] = eig(Cov);

Doresoom

I'd try the following approach:

  1. Calculate the x-y centroid for the center of the ellipse (x,y in the linked question)
  2. Calculate the linear regression fit line to get the orientation of the ellipse's major axis (angle)
  3. Calculate the standard deviation in the x and y axes
  4. Translate the x-y standard deviations so they're orthogonal to the fit line (a,b)

I'll assume there is only one set of points given in a single matrix, e.g.

B = A(1:10,2:3);

you can reproduce this procedure for each data set.

  1. Compute the center of the ellipsoid, which is the mean of the points. Matlab function: mean
  2. Center your data. Matlab function bsxfun
  3. Compute the principal axis of the ellipsoid and their respective magnitude. Matlab function: eig

The successive steps are illustrated below:

Center = mean(B,1);
Centered_data = bsxfun(@minus,B,Center);
[AX,MAG] = eig(Centered_data' * Centered_data);

The columns of AX contain the vectors describing the principal axis of the ellipsoid while the diagonal of MAG contains information on their magnitude. To plot the ellipsoid, scale each principal axis with the square root of its magnitude.

Hope this helps.

A.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!