1 #sklearn实现KNN 2 步骤: 3 1、导入分类器 4 2、加载数据集 5 3、分割训练数据、测试数据 6 4、用分类器拟合数据 7 5、预测数据 8 9 from sklearn import datasets 10 from sklearn.model_selection import train_test_split 11 from sklearn.neighbors import KNeighborsClassifier 12 13 #创建数据 14 iris=datasets.load_iris() 15 iris_X=iris.data 16 iris_Y=iris.target 17 print(iris_X[:5,:]) 18 print(iris_Y[:5]) 19 20 X_train,X_test,y_train,y_test=train_test_split(iris_X,iris_Y,test_size=0.3) 21 print(y_train) 22 23 knn=KNeighborsClassifier() 24 knn.fit(X_train,y_train) 25 print(knn.predict(X_test)) 26 print(y_test)
<iframe src="http://nbviewer.jupyter.org/github/LiaoPan/MyCodeSpace/blob/master/Demo_juypter.ipynb" width="850" height="500"></iframe>