numpy中求向量、矩阵的范数

吃可爱长大的小学妹 提交于 2019-11-28 05:54:43

np.linalg.norm()    # linalg = linear(线性) + algebra(代数),   norm表示范数

 

x_norm = np.linalg.norm(x, ord=None, axis=None, keepdims=False)

 

①x: 表示矩阵(也可以是一维)

②ord:范数类型

向量的范数:

 

矩阵的范数:

ord=1:列和的最大值

ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根

ord=∞:行和的最大值

 

③axis:处理类型

axis=1表示按行向量处理,求多个行向量的范数

axis=0表示按列向量处理,求多个列向量的范数

axis=None表示矩阵范数。

 

④keepdims:是否保持矩阵的二维特性,避免出现shape = (5, )这样的形状

True表示保持矩阵的二维特性,False相反

 

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!