Decision Tree in Matlab

*爱你&永不变心* 提交于 2019-11-28 05:07:06

The documentation page of the function classregtree is self-explanatory...

Lets go over some of the most common parameters of the classification tree model:

  • x: data matrix, rows are instances, cols are predicting attributes
  • y: column vector, class label for each instance
  • categorical: specify which attributes are discrete type (as opposed to continuous)
  • method: whether to produce classification or regression tree (depend on the class type)
  • names: gives names to the attributes
  • prune: enable/disable reduced-error pruning
  • minparent/minleaf: allows to specify min number of instances in a node if it is to be further split
  • nvartosample: used in random trees (consider K randomly chosen attributes at each node)
  • weights: specify weighted instances
  • cost: specify cost matrix (penalty of the various errors)
  • splitcriterion: criterion used to select the best attribute at each split. I'm only familiar with the Gini index which is a variation of the Information Gain criterion.
  • priorprob: explicitly specify prior class probabilities, instead of being calculated from the training data

A complete example to illustrate the process:

%# load data
load carsmall

%# construct predicting attributes and target class
vars = {'MPG' 'Cylinders' 'Horsepower' 'Model_Year'};
x = [MPG Cylinders Horsepower Model_Year];  %# mixed continous/discrete data
y = cellstr(Origin);                        %# class labels

%# train classification decision tree
t = classregtree(x, y, 'method','classification', 'names',vars, ...
                'categorical',[2 4], 'prune','off');
view(t)

%# test
yPredicted = eval(t, x);
cm = confusionmat(y,yPredicted);           %# confusion matrix
N = sum(cm(:));
err = ( N-sum(diag(cm)) ) / N;             %# testing error

%# prune tree to avoid overfitting
tt = prune(t, 'level',3);
view(tt)

%# predict a new unseen instance
inst = [33 4 78 NaN];
prediction = eval(tt, inst)    %# pred = 'Japan'


Update:

The above classregtree class was made obsolete, and is superseded by ClassificationTree and RegressionTree classes in R2011a (see the fitctree and fitrtree functions, new in R2014a).

Here is the updated example, using the new functions/classes:

t = fitctree(x, y, 'PredictorNames',vars, ...
    'CategoricalPredictors',{'Cylinders', 'Model_Year'}, 'Prune','off');
view(t, 'mode','graph')

y_hat = predict(t, x);
cm = confusionmat(y,y_hat);

tt = prune(t, 'Level',3);
view(tt)

predict(tt, [33 4 78 NaN])
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!