I have a sorted array and want to do binary search on it.
So I'm asking if something is already available in Swift library like sort etc.? Or is there a type independend version available?
Of course I could write it by my own, but I like to avoid reinventing the wheel again.
Here's a generic way to use binary search:
func binarySearch<T:Comparable>(inputArr:Array<T>, searchItem: T) -> Int? {
var lowerIndex = 0;
var upperIndex = inputArr.count - 1
while (true) {
let currentIndex = (lowerIndex + upperIndex)/2
if(inputArr[currentIndex] == searchItem) {
return currentIndex
} else if (lowerIndex > upperIndex) {
return nil
} else {
if (inputArr[currentIndex] > searchItem) {
upperIndex = currentIndex - 1
} else {
lowerIndex = currentIndex + 1
}
}
}
}
var myArray = [1,2,3,4,5,6,7,9,10];
if let searchIndex = binarySearch(myArray,5){
println("Element found on index: \(searchIndex)");
}
Here's my favorite implementation of binary search. It's useful not only for finding the element but also for finding the insertion index. Details about assumed sorting order (ascending or descending) and behavior with respect to equal elements are controlled by providing a corresponding predicate (e.g. { $0 < x }
vs { $0 > x }
vs { $0 <= x }
vs { $0 >= x }
). The comment unambiguously says what exactly does it do.
extension RandomAccessCollection {
/// Finds such index N that predicate is true for all elements up to
/// but not including the index N, and is false for all elements
/// starting with index N.
/// Behavior is undefined if there is no such N.
func binarySearch(predicate: (Element) -> Bool) -> Index {
var low = startIndex
var high = endIndex
while low != high {
let mid = index(low, offsetBy: distance(from: low, to: high)/2)
if predicate(self[mid]) {
low = index(after: mid)
} else {
high = mid
}
}
return low
}
}
Example usage:
(0 ..< 778).binarySearch { $0 < 145 } // 145
I use an extension
on Indexable
implementing indexOfFirstObjectPassingTest
.
- It takes a
test
predicate, and returns the index of the first element to pass the test. - If there is no such index, then it returns
endIndex
of theIndexable
. - If the
Indexable
is empty, you get theendIndex
.
Example
let a = [1,2,3,4]
a.map{$0>=3}
// returns [false, false, true, true]
a.indexOfFirstObjectPassingTest {$0>=3}
// returns 2
Important
You need to ensure test
never returns in false
for any index after an index it has said true
for. This is equivalent to the usual precondition that binary search requires your data to be in order.
Specifically, you must not do a.indexOfFirstObjectPassingTest {$0==3}
. This will not work correctly.
Why?
indexOfFirstObjectPassingTest
is useful because it lets you find ranges of stuff in your data. By adjusting the test, you can find the lower and upper limits of "stuff".
Here's some data:
let a = [1,1,1, 2,2,2,2, 3, 4, 5]
We can find the Range
of all the 2
s like this…
let firstOf2s = a.indexOfFirstObjectPassingTest({$0>=2})
let endOf2s = a.indexOfFirstObjectPassingTest({$0>2})
let rangeOf2s = firstOf2s..<endOf2s
- If there are no
2
s in the data, we'll get back an empty range, and we don't need any special handling. - Provided there are
2
s, we'll find all of them.
As an example, I use this in an implementation of layoutAttributesForElementsInRect
. My UICollectionViewCells
are stored sorted vertically in an array. It's easy to write a pair of calls that will find all cells that are within a particular rectangle and exclude any others.
Code
extension Indexable {
func indexOfFirstObjectPassingTest( test: (Self._Element -> Bool) ) -> Self.Index {
var searchRange = startIndex..<endIndex
while searchRange.count > 0 {
let testIndex: Index = searchRange.startIndex.advancedBy((searchRange.count-1) / 2)
let passesTest: Bool = test(self[testIndex])
if(searchRange.count == 1) {
return passesTest ? searchRange.startIndex : endIndex
}
if(passesTest) {
searchRange.endIndex = testIndex.advancedBy(1)
}
else {
searchRange.startIndex = testIndex.advancedBy(1)
}
}
return endIndex
}
}
Disclaimer & Caution
I have about 6 years of iOS experience, 10 of Objective C, and >18 programming generally…
…But I'm on day 3 of Swift :-)
- I've used an extension on the
Indexable
protocol. This might be stupid approach – feedback welcomed. - Binary searches are notoriously hard to correctly code. You really should read that link to find out just how common mistakes in their implementation are, but here is an extract:
When Jon Bentley assigned it as a problem in a course for professional programmers, he found that an astounding ninety percent failed to code a binary search correctly after several hours of working on it, and another study shows that accurate code for it is only found in five out of twenty textbooks. Furthermore, Bentley's own implementation of binary search, published in his 1986 book Programming Pearls, contains an error that remained undetected for over twenty years.
Given that last point, here are test for this code. They pass. They are unlikely to be exhaustive – so there may certainly still be errors. The tests are not guaranteed to actually be correct! There are no tests for the tests.
Tests
class BinarySearchTest: XCTestCase {
func testCantFind() {
XCTAssertEqual([].indexOfFirstObjectPassingTest {(_: Int) -> Bool in false}, 0)
XCTAssertEqual([1].indexOfFirstObjectPassingTest {(_: Int) -> Bool in false}, 1)
XCTAssertEqual([1,2].indexOfFirstObjectPassingTest {(_: Int) -> Bool in false}, 2)
XCTAssertEqual([1,2,3].indexOfFirstObjectPassingTest {(_: Int) -> Bool in false}, 3)
XCTAssertEqual([1,2,3,4].indexOfFirstObjectPassingTest {(_: Int) -> Bool in false}, 4)
}
func testAlwaysFirst() {
XCTAssertEqual([].indexOfFirstObjectPassingTest {(_: Int) -> Bool in true}, 0)
XCTAssertEqual([1].indexOfFirstObjectPassingTest {(_: Int) -> Bool in true}, 0)
XCTAssertEqual([1,2].indexOfFirstObjectPassingTest {(_: Int) -> Bool in true}, 0)
XCTAssertEqual([1,2,3].indexOfFirstObjectPassingTest {(_: Int) -> Bool in true}, 0)
XCTAssertEqual([1,2,3,4].indexOfFirstObjectPassingTest {(_: Int) -> Bool in true}, 0)
}
func testFirstMatch() {
XCTAssertEqual([1].indexOfFirstObjectPassingTest {1<=$0}, 0)
XCTAssertEqual([0,1].indexOfFirstObjectPassingTest {1<=$0}, 1)
XCTAssertEqual([1,2].indexOfFirstObjectPassingTest {1<=$0}, 0)
XCTAssertEqual([0,1,2].indexOfFirstObjectPassingTest {1<=$0}, 1)
}
func testLots() {
let a = Array(0..<1000)
for i in a.indices {
XCTAssertEqual(a.indexOfFirstObjectPassingTest({Int(i)<=$0}), i)
}
}
}
extension ArraySlice where Element: Comparable {
func binarySearch(_ value: Element) -> Int? {
guard !isEmpty else { return nil }
let midIndex = (startIndex + endIndex) / 2
if value == self[midIndex] {
return midIndex
} else if value > self[midIndex] {
return self[(midIndex + 1)...].binarySearch(value)
} else {
return self[..<midIndex].binarySearch(value)
}
}
}
extension Array where Element: Comparable {
func binarySearch(_ value: Element) -> Int? {
return self[0...].binarySearch(value)
}
}
This is, in my opinion, very readable and leverages the fact that Swift's ArraySlice is a view on Array and retains the same indexes as the original Array with which it shares the storage so, in absence of mutations (like in this case), it is therefore very efficient.
Here is an implementation for a sorted array of strings.
var arr = ["a", "abc", "aabc", "aabbc", "aaabbbcc", "bacc", "bbcc", "bbbccc", "cb", "cbb", "cbbc", "d" , "defff", "deffz"]
func binarySearch(_ array: [String], value: String) -> String {
var firstIndex = 0
var lastIndex = array.count - 1
var wordToFind = "Not founded"
var count = 0
while firstIndex <= lastIndex {
count += 1
let middleIndex = (firstIndex + lastIndex) / 2
let middleValue = array[middleIndex]
if middleValue == value {
wordToFind = middleValue
return wordToFind
}
if value.localizedCompare(middleValue) == ComparisonResult.orderedDescending {
firstIndex = middleIndex + 1
}
if value.localizedCompare(middleValue) == ComparisonResult.orderedAscending {
print(middleValue)
lastIndex = middleIndex - 1
}
}
return wordToFind
}
//print d
print(binarySearch(arr, value: "d"))
Here's a better implementation that returns more than one index, if there are more than 1 in the array.
extension Array where Element: Comparable {
/* Array Must be sorted */
func binarySearch(key: Element) -> [Index]? {
return self.binarySearch(key, initialIndex: 0)
}
private func binarySearch(key: Element, initialIndex: Index) -> [Index]? {
guard count > 0 else { return nil }
let midIndex = count / 2
let midElement = self[midIndex]
if key == midElement {
// Found!
let foundIndex = initialIndex + midIndex
var indexes = [foundIndex]
// Check neighbors for same values
// Check Left Side
var leftIndex = midIndex - 1
while leftIndex >= 0 {
//While there is still more items on the left to check
print(leftIndex)
if self[leftIndex] == key {
//If the items on the left is still matching key
indexes.append(leftIndex + initialIndex)
leftIndex--
} else {
// The item on the left is not identical to key
break
}
}
// Check Right side
var rightIndex = midIndex + 1
while rightIndex < count {
//While there is still more items on the left to check
if self[rightIndex] == key {
//If the items on the left is still matching key
indexes.append(rightIndex + initialIndex)
rightIndex++
} else {
// The item on the left is not identical to key
break
}
}
return indexes.sort{ return $0 < $1 }
}
if count == 1 {
guard let first = first else { return nil }
if first == key {
return [initialIndex]
}
return nil
}
if key < midElement {
return Array(self[0..<midIndex]).binarySearch(key, initialIndex: initialIndex + 0)
}
if key > midElement {
return Array(self[midIndex..<count]).binarySearch(key, initialIndex: initialIndex + midIndex)
}
return nil
}
}
Here's a full example with several test cases for Swift 3.1. There is no chance that this is faster than the default implementation, but that's not the point. Array extension is at the bottom:
// BinarySearchTests.swift
// Created by Dan Rosenstark on 3/27/17
import XCTest
@testable import SwiftAlgos
class BinarySearchTests: XCTestCase {
let sortedArray : [Int] = [-25, 1, 2, 4, 6, 8, 10, 14, 15, 1000]
func test5() {
let traditional = sortedArray.index(of: 5)
let newImplementation = sortedArray.indexUsingBinarySearch(of: 5)
XCTAssertEqual(traditional, newImplementation)
}
func testMembers() {
for item in sortedArray {
let traditional = sortedArray.index(of: item)
let newImplementation = sortedArray.indexUsingBinarySearch(of: item)
XCTAssertEqual(traditional, newImplementation)
}
}
func testMembersAndNonMembers() {
for item in (-100...100) {
let traditional = sortedArray.index(of: item)
let newImplementation = sortedArray.indexUsingBinarySearch(of: item)
XCTAssertEqual(traditional, newImplementation)
}
}
func testSingleMember() {
let sortedArray = [50]
for item in (0...100) {
let traditional = sortedArray.index(of: item)
let newImplementation = sortedArray.indexUsingBinarySearch(of: item)
XCTAssertEqual(traditional, newImplementation)
}
}
func testEmptyArray() {
let sortedArray : [Int] = []
for item in (0...100) {
let traditional = sortedArray.index(of: item)
let newImplementation = sortedArray.indexUsingBinarySearch(of: item)
XCTAssertEqual(traditional, newImplementation)
}
}
}
extension Array where Element : Comparable {
// self must be a sorted Array
func indexUsingBinarySearch(of element: Element) -> Int? {
guard self.count > 0 else { return nil }
return binarySearch(for: element, minIndex: 0, maxIndex: self.count - 1)
}
private func binarySearch(for element: Element, minIndex: Int, maxIndex: Int) -> Int? {
let count = maxIndex - minIndex + 1
// if there are one or two elements, there is no futher recursion:
// stop and check one or both values (and return nil if neither)
if count == 1 {
return element == self[minIndex] ? minIndex : nil
} else if count == 2 {
switch element {
case self[minIndex]: return minIndex
case self[maxIndex]: return maxIndex
default: return nil
}
}
let breakPointIndex = Int(round(Double(maxIndex - minIndex) / 2.0)) + minIndex
let breakPoint = self[breakPointIndex]
let splitUp = (breakPoint < element)
let newMaxIndex : Int = splitUp ? maxIndex : breakPointIndex
let newMinIndex : Int = splitUp ? breakPointIndex : minIndex
return binarySearch(for: element, minIndex: newMinIndex, maxIndex: newMaxIndex)
}
}
This is quite homemade, so... caveat emptor. It does work and does do binary search.
here is binary search using while syntax
func binarySearch<T: Comparable>(_ a: [T], key: T) -> Int? {
var lowerBound = 0
var upperBound = a.count
while lowerBound < upperBound {
let midIndex = lowerBound + (upperBound - lowerBound) / 2
if a[midIndex] == key {
return midIndex
} else if a[midIndex] < key {
lowerBound = midIndex + 1
} else {
upperBound = midIndex
}
}
return nil
}
By recursive binary search,
func binarySearch(data : [Int],search: Int,high : Int,low:Int) -> Int? {
if (low > high)
{
return nil
}
let mid = low + (low + high)/2
if (data[mid] == search) {
return mid
}
else if (search < data[mid]){
return binarySearch(data: data, search: search, high: high-1, low: low)
}else {
return binarySearch(data: data, search: search, high: high, low: low+1)
}
}
Input : let arry = Array(0...5)
// [0,1,2,3,4,5]
print(binarySearch(data: arry, search: 0, high: arry.count-1, low: 0))
来源:https://stackoverflow.com/questions/31904396/swift-binary-search-for-standard-array