Move column by name to front of table in pandas

删除回忆录丶 提交于 2019-11-28 03:32:44

We can use ix to reorder by passing a list:

In [27]:
# get a list of columns
cols = list(df)
# move the column to head of list using index, pop and insert
cols.insert(0, cols.pop(cols.index('Mid')))
cols
Out[27]:
['Mid', 'Net', 'Upper', 'Lower', 'Zsore']
In [28]:
# use ix to reorder
df = df.ix[:, cols]
df
Out[28]:
                      Mid Net  Upper   Lower  Zsore
Answer_option                                      
More_than_once_a_day    2  0%  0.22%  -0.12%     65
Once_a_day              3  0%  0.32%  -0.19%     45
Several_times_a_week    4  2%  2.45%   1.10%     78
Once_a_week             6  1%  1.63%  -0.40%     65

Another method is to take a reference to the column and reinsert it at the front:

In [39]:
mid = df['Mid']
df.drop(labels=['Mid'], axis=1,inplace = True)
df.insert(0, 'Mid', mid)
df
Out[39]:
                      Mid Net  Upper   Lower  Zsore
Answer_option                                      
More_than_once_a_day    2  0%  0.22%  -0.12%     65
Once_a_day              3  0%  0.32%  -0.19%     45
Several_times_a_week    4  2%  2.45%   1.10%     78
Once_a_week             6  1%  1.63%  -0.40%     65

You can also use loc to achieve the same result as ix will be deprecated in a future version of pandas from 0.20.0 onwards:

df = df.loc[:, cols]

You can use the df.reindex() function in pandas. df is

                      Net  Upper   Lower  Mid  Zsore
Answer option                                      
More than once a day  0%  0.22%  -0.12%    2     65
Once a day            0%  0.32%  -0.19%    3     45
Several times a week  2%  2.45%   1.10%    4     78
Once a week           1%  1.63%  -0.40%    6     65

define an list of column names

cols = df.columns.tolist()
cols
Out[13]: ['Net', 'Upper', 'Lower', 'Mid', 'Zsore']

move the column name to wherever you want

cols.insert(0, cols.pop(cols.index('Mid')))
cols
Out[16]: ['Mid', 'Net', 'Upper', 'Lower', 'Zsore']

then use df.reindex() function to reorder

df = df.reindex(columns= cols)

out put is: df

                      Mid  Upper   Lower Net  Zsore
Answer option                                      
More than once a day    2  0.22%  -0.12%  0%     65
Once a day              3  0.32%  -0.19%  0%     45
Several times a week    4  2.45%   1.10%  2%     78
Once a week             6  1.63%  -0.40%  1%     65
citynorman

I didn't like how I had to explicitly specify all the other column in the other solutions so this worked best for me. Though it might be slow for large dataframes...?

df = df.set_index('Mid').reset_index()

Here is a generic set of code that I frequently use to rearrange the position of columns. You may find it useful.

cols = df.columns.tolist()
n = int(cols.index('Mid'))
cols = [cols[n]] + cols[:n] + cols[n+1:]
df = df[cols]

Maybe I'm missing something, but a lot of these answers seem overly complicated. You should be able to just set the columns within a single list:

Column to the front:

df = df[ ['Mid'] + [ col for col in df.columns if col != 'Mid' ] ]

Or if instead, you want to move it to the back:

df = df[ [ col for col in df.columns if col != 'Mid' ] + ['Mid'] ]

Or if you wanted to move more than one column:

cols_to_move = ['Mid', 'Zsore']
df           = df[ cols_to_move + [ col for col in df.columns if col not in cols_to_move ] ]

To reorder the rows of a dataframe just use a list as follows.

df = df[['Mid', 'Net', 'Upper', 'Lower', 'Zsore']]

This makes it very obvious what was done when reading the code later. Also use:

df.columns
Out[1]: Index(['Net', 'Upper', 'Lower', 'Mid', 'Zsore'], dtype='object')

Then cut and paste to reorder.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!