Pandas every nth row

▼魔方 西西 提交于 2019-11-28 03:22:23
chrisb

I'd use iloc, which takes a row/column slice, both based on integer position and following normal python syntax.

df.iloc[::5, :]

Though @chrisb's accepted answer does answer the question, I would like to add to it the following.

A simple method I use to get the nth data or drop the nth row is the following:

df1 = df[df.index % 3 != 0]  # Excludes every 3rd row starting from 0
df2 = df[df.index % 3 == 0]  # Selects every 3rd raw starting from 0

This arithmetic based sampling has the ability to enable even more complex row-selections.

This assumes, of course, that you have an index column of ordered, consecutive, integers starting at 0.

There is an even simpler solution to the accepted answer that involves directly invoking df.__getitem__.

df = pd.DataFrame('x', index=range(5), columns=list('abc'))
df

   a  b  c
0  x  x  x
1  x  x  x
2  x  x  x
3  x  x  x
4  x  x  x

For example, to get every 2 rows, you can do

df[::2]

   a  b  c
0  x  x  x
2  x  x  x
4  x  x  x

There's also GroupBy.first/GroupBy.head, you group on the index:

df.index // 2
# Int64Index([0, 0, 1, 1, 2], dtype='int64')

df.groupby(df.index // 2).first()
# Alternatively,
# df.groupby(df.index // 2).head(1)

   a  b  c
0  x  x  x
1  x  x  x
2  x  x  x

The index is floor-divved by the stride (2, in this case). If the index is non-numeric, instead do

# df.groupby(np.arange(len(df)) // 2).first()
df.groupby(pd.RangeIndex(len(df)) // 2).first()

   a  b  c
0  x  x  x
1  x  x  x
2  x  x  x

I had a similar requirement, but I wanted the n'th item in a particular group. This is how I solved it.

groups = data.groupby(['group_key'])
selection = groups['index_col'].apply(lambda x: x % 3 == 0)
subset = data[selection]
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!