问题
In the tensorflow Dataset
pipeline I'd like to define a custom map function which takes a single input element (data sample) and returns multiple elements (data samples).
The code below is my attempt, along with the desired results.
I could not follow the documentation on tf.data.Dataset().flat_map()
well enough to understand if it was applicable here or not.
import tensorflow as tf
input = [10, 20, 30]
def my_map_func(i):
return [[i, i+1, i+2]] # Fyi [[i], [i+1], [i+2]] throws an exception
ds = tf.data.Dataset.from_tensor_slices(input)
ds = ds.map(map_func=lambda input: tf.py_func(
func=my_map_func, inp=[input], Tout=[tf.int64]
))
element = ds.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for _ in range(9):
print(sess.run(element))
Results:
(array([10, 11, 12]),)
(array([20, 21, 22]),)
(array([30, 31, 32]),)
Desired results:
(10)
(11)
(12)
(20)
(21)
(22)
(30)
(31)
(32)
回答1:
Two more steps were required to achieve this. First, the map function needs to return a numpy array, not a list.
Then you can use flat_map
combined with Dataset().from_tensor_slices()
to flatten them. The code below now produces the desired result:
Tested in Tensorflow 1.5 (copy/paste runnable example)
import tensorflow as tf
import numpy as np
input = [10, 20, 30]
def my_map_func(i):
return np.array([i, i + 1, i + 2])
ds = tf.data.Dataset.from_tensor_slices(input)
ds = ds.map(map_func=lambda input: tf.py_func(
func=my_map_func, inp=[input], Tout=[tf.int64]
))
ds = ds.flat_map(lambda x: tf.data.Dataset().from_tensor_slices(x))
element = ds.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for _ in range(9):
print(sess.run(element))
Here is a method of doing this if you have multiple variables to return, in this example I input a string (such as a filename) and output multiples of both strings and integers. In this case I repeat the string for each of the integers of [10, 20, 30].
Copy/paste runnable example:
import tensorflow as tf
import numpy as np
input = [b'testA', b'testB', b'testC']
def my_map_func(input):
return np.array([input, input, input]), np.array([10, 20, 30])
ds = tf.data.Dataset.from_tensor_slices(input)
ds = ds.map(map_func=lambda input: tf.py_func(
func=my_map_func, inp=[input], Tout=[tf.string, tf.int64]))
ds = ds.flat_map(lambda mystr, myint: tf.data.Dataset().zip((
tf.data.Dataset().from_tensor_slices(mystr),
tf.data.Dataset().from_tensor_slices(myint))
))
element = ds.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for _ in range(9):
print(sess.run(element))
回答2:
one clean solution using flat_map
and from_tensor_slices
import tensorflow as tf
input = [10, 20, 30]
ds = tf.data.Dataset.from_tensor_slices(input)
ds = ds.flat_map(lambda x: tf.data.Dataset.from_tensor_slices([x, x+1, x+2]))
element = ds.make_one_shot_iterator().get_next()
with tf.Session() as sess:
for _ in range(9):
print(sess.run(element))
# 10
# 11
# 12
# 20
# 21
# 22
# 30
# 31
# 32
回答3:
Just wanted to add that this can be done for datasets where each element is a dictionary as well. For example, if one element of the input dataset looks like
{ 'feat1': [2,4], 'feat2': [3]}
And for each element you want to split into to elements based on the elements in feat1, you could write:
def split(element):
dict_of_new_elements = {
'feat1': [
element['feat1'][:, 0],
element['feat1'][:, 1]]
'feat2': [
element['feat2'],
element['feat2']]
}
return tf.data.Dataset.from_tensor_slices(dict_of_new_elements)
dataset.flat_map(split)
Which would yield
[
{'feat1': 2, 'feat2': 3},
{'feat1': 4, 'feat2': 3},
]
来源:https://stackoverflow.com/questions/48471926/in-tensorflows-dataset-api-how-do-you-map-one-element-into-multiple-elements