Pandas: Sort a Multiindex Dataframe's multi-level column with mixed datatypes

牧云@^-^@ 提交于 2021-02-10 15:43:56

问题


Below is my dataframe:

In [2804]: df = pd.DataFrame({'A':[1,2,3,4,5,6], 'D':[{"value": '126', "perc": None, "unit": None}, {"value": 324, "perc": None, "unit": None}, {"value": 'N/A', "perc": None, "unit": None}, {}, {"value": '100', "perc": None, "unit": None}, np.nan]})

In [2794]: df.columns = pd.MultiIndex.from_product([df.columns, ['E']])

In [2807]: df
Out[2807]: 
   A                                             D
   E                                             E
0  1  {'value': '126', 'perc': None, 'unit': None}
1  2    {'value': 324, 'perc': None, 'unit': None}
2  3  {'value': 'N/A', 'perc': None, 'unit': None}
3  4                                            {}
4  5  {'value': '100', 'perc': None, 'unit': None}
5  6                                           NaN

I need to sort the multi-level column with index (D,E) in descending order based on value key from dict.

As you can see value key can have values in mixed datatypes like int, string or empty like {}, or NaN.

N/A and Nan values should always appear at last after sorting(both asc and desc).

Expected output:

In [2814]: df1 = pd.DataFrame({'A':[2,1,5,3,4,6], 'D':[{"value": 324, "perc": None, "unit": None}, {"value": '126', "perc": None, "unit": None}, {"value": '100', "perc": None, "unit": None}, {"value": 'N/A', "perc": None, "unit": None}, {},np.nan]})

In [2799]: df1.columns = pd.MultiIndex.from_product([df1.columns, ['E']])

In [2811]: df1
Out[2811]: 
   A                                             D
   E                                             E
0  2    {'value': 324, 'perc': None, 'unit': None}
1  1  {'value': '126', 'perc': None, 'unit': None}
2  5  {'value': '100', 'perc': None, 'unit': None}
3  3  {'value': 'N/A', 'perc': None, 'unit': None}
4  4                                            {}
5  6                                           NaN

回答1:


Create helper column filled by numeric and sorting by this column:

df['tmp'] = pd.to_numeric(df[('D','E')].str.get('value'), errors='coerce')
df1 = df.sort_values('tmp', ascending=False).drop('tmp', axis=1)
print (df1)
   A                                             D
   E                                             E
1  2    {'value': 324, 'perc': None, 'unit': None}
0  1  {'value': '126', 'perc': None, 'unit': None}
4  5  {'value': '100', 'perc': None, 'unit': None}
2  3  {'value': 'N/A', 'perc': None, 'unit': None}
3  4                                            {}
5  6                                           NaN

df1 = df.sort_values('tmp').drop('tmp', axis=1)
print (df1)
   A                                             D
   E                                             E
4  5  {'value': '100', 'perc': None, 'unit': None}
0  1  {'value': '126', 'perc': None, 'unit': None}
1  2    {'value': 324, 'perc': None, 'unit': None}
2  3  {'value': 'N/A', 'perc': None, 'unit': None}
3  4                                            {}
5  6                                           NaN
    


来源:https://stackoverflow.com/questions/64571500/pandas-sort-a-multiindex-dataframes-multi-level-column-with-mixed-datatypes

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!