问题
I have a data file containing different foetal ultrasound measurements. The measurements are collected at different points during pregnancy, like so:
PregnancyID MotherID gestationalAgeInWeeks abdomCirc
0 0 14 150
0 0 21 200
1 1 20 294
1 1 25 315
1 1 30 350
2 2 8 170
2 2 9 180
2 2 18 NaN
As you can see from the table above, I have multiple measurements per pregnancy (between 1 and 26 observations each).
I want to summarise the ultrasound measurements somehow such that I can replace the multiple measurements with a fixed amount of features per pregnancy. So I thought of creating 3 new features, one for each trimester of pregnancy that would hold the maximum measurement recorded during that trimester:
- abdomCirc1st: this feature would hold the maximum value of all abdominal circumference measurements measured between 0 to 13 Weeks
- abdomCirc2nd: this feature would hold the maximum value of all abdominal circumference measurements measured between 14 to 26 Weeks
- abdomCirc3rd: this feature would hold the maximum value of all abdominal circumference measurements measured between 27 to 40 Weeks
So my final dataset would look like this:
PregnancyID MotherID abdomCirc1st abdomCirc2nd abdomCirc3rd
0 0 NaN 200 NaN
1 1 NaN 315 350
2 2 180 NaN NaN
The reason for using the maximum here is that a larger abdominal circumference is associated with the adverse outcome I am trying to predict.
But I am quite confused about how to go about this. I have used the groupby function previously to derive certain statistical features from the multiple measurements, however this is a more complex task.
What I want to do is the following:
Group all abdominal circumference measurements that belong to the same pregnancy into 3 trimesters based on gestationalAgeInWeeks value
Compute the maximum value of all abdominal circumference measurements within each trimester, and assign this value to the relevant feature; abdomCirc1st, abdomCir2nd or abdomCirc3rd.
I think I have to do something along the lines of:
df["abdomCirc1st"] = df.groupby(['MotherID', 'PregnancyID', 'gestationalAgeInWeeks'])["abdomCirc"].transform('max')
But this code does not check what trimester the measurement was taken in (gestationalAgeInWeeks). I would appreciate some help with this task.
回答1:
You can try this. a bit of a complicated query but it seems to work:
(df.groupby(['MotherID', 'PregnancyID'])
.apply(lambda d: d.assign(tm = (d['gestationalAgeInWeeks']+ 13 - 1 )// 13))
.groupby('tm')['abdomCirc']
.apply(max))
.unstack()
)
produces
tm 1 2 3
MotherID PregnancyID
0 0 NaN 200.0 NaN
1 1 NaN 294.0 350.0
2 2 180.0 NaN NaN
Let's unpick this a bit. First we groupby
on MontherId, PregnancyID. Then we apply
a function to each grouped dataframe (d
)
For each d, we create a 'trimester' column 'tm'
via assign
(I assume I got the math right here, but correct it if it is wrong!), then we groupby
by 'tm'
and apply max
. For each sub-dataframe d
then we obtain a Series which is tm:max(abdomCirc)
.
Then we unstack()
that moves tm
to the column names
You may want to rename this columns later, but I did not bother
Solution 2
Come to think of it you can simplify the above a bit:
(df.assign(tm = (df['gestationalAgeInWeeks']+ 13 - 1 )// 13))
.drop(columns = 'gestationalAgeInWeeks')
.groupby(['MotherID', 'PregnancyID','tm'])
.agg('max')
.unstack()
)
similar idea, same output.
回答2:
There is a magic command called query. This should do your work for now:
abdomCirc1st = df.query('MotherID == 0 and PregnancyID == 0 and gestationalAgeInWeeks <= 13')['abdomCirc'].max()
abdomCirc2nd = df.query('MotherID == 0 and PregnancyID == 0 and gestationalAgeInWeeks >= 14 and gestationalAgeInWeeks <= 26')['abdomCirc'].max()
abdomCirc3rd = df.query('MotherID == 0 and PregnancyID == 0 and gestationalAgeInWeeks >= 27 and gestationalAgeInWeeks <= 40')['abdomCirc'].max()
If you want something more automatic (and not manually changing the values of your ID's: MotherID and PregnancyID, every time for each different group of rows), you have to combine it with groupby (as you did on your own)
Check this as well: https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.query.html
来源:https://stackoverflow.com/questions/65106011/summarising-features-with-multiple-values-in-python-for-machine-learning-model