summarise logical dataframe with dplyr

旧街凉风 提交于 2021-02-07 16:10:36

问题


I'm trying to summarise a dataframe using two variables - I basically want to break down variable 1 by variable 2 in order to plot the results in a 100% stacked bar chart.

I have multiple columns of type logical, which can be split between two main categories that will be used to create the breakdown.

I have tried to use gather from dplyr to transform the dataframe to longform, however the output is not what I expect.

topics_by_variable <- function (dataset, variable_1, variable_2) {

  #select variables columns
  variable_1_columns <- dataset[, data.table::`%like%`(names(dataset), variable_1)]
  variable_2_columns <- dataset[, data.table::`%like%`(names(dataset), variable_2)]
  #create new dataframe including only relevant columns
  df <- cbind(variable_1_columns, variable_2_columns)
  #transform df to long form
  new_df <- tidyr::gather(df, variable_2, count, names(variable_2_columns[1]):names(variable_2_columns)[length(names(variable_2_columns))], factor_key=FALSE)

  #count topics
  topic_count <- function (x) {
                  t <- sum(x == TRUE)
  }
  #group by variable 2 and count
  new_df <- new_df %>%
            dplyr::group_by(variable_2) %>%
            dplyr::summarise_at(topic_names, .funs = topic_count)

  #transform new_df to longform
  final_df <- tidyr::gather(new_df, topic, volume, names(variable_1_columns[1]):names(variable_1_columns)[length(names(variable_1_columns))], factor_key=FALSE)
  final_df <- data.frame(final_df)

Here is the dataset I'm using:

structure(list(topic_su = c("TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE"), topic_so = c("FALSE", 
"FALSE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "FALSE", "FALSE", "FALSE", "FALSE"), topic_cl = c("FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE"
), topic_in = c("FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE"), topic_qu = c("FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE"), topic_re = c("FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE"), brands_ne = c("TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE"
), brands_st = c("FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE"), brands_co = c("FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE"
), brands_seg = c("FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE"), brands_sen = c("TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", 
"TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE", "TRUE"), brands_ta = c("FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "TRUE"), brands_tc = c("FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", "FALSE", 
"FALSE", "FALSE")), class = "data.frame", row.names = c(NA, -39L
))

The desired output would be the following, however when I use gather the volume figure is the total number of rows and is repeated across all brands.

variable_2       topic                volume
   <chr>            <chr>              <int>
 1 brands_co     topic_su               10
 2 brands_ne     topic_su               17
 3 brands_seg    topic_su               10 
 4 brands_sen    topic_su               18
 5 brands_st     topic_su                0
 6 brands_ta     topic_su                1
 7 brands_tc     topic_su                0
 8 brands_co     topic_so               22
 9 brands_ne     topic_so               17
10 brands_seg    topic_so               11 
11 brands_sen    topic_so               23
12 brands_st     topic_so                0
13 brands_ta     topic_so                0
14 brands_tc     topic_so                0

回答1:


Assuming that your dataset is dt you can do something like this:

library(dplyr)

expand.grid(brand = names(dt)[grepl("brands", names(dt))],         
            topic = names(dt)[grepl("topic", names(dt))],
            stringsAsFactors = F) %>%
  rowwise() %>%
  mutate(volume = sum(dt[brand] == "TRUE" & dt[topic] == "TRUE")) %>%
  ungroup()

# # A tibble: 42 x 3
#   brand      topic    volume
#   <chr>      <chr>     <int>
# 1 brands_ne  topic_su     17
# 2 brands_st  topic_su      0
# 3 brands_co  topic_su     10
# 4 brands_seg topic_su     10
# 5 brands_sen topic_su     18
# 6 brands_ta  topic_su      1
# 7 brands_tc  topic_su      0
# 8 brands_ne  topic_so     17
# 9 brands_st  topic_so      0
#10 brands_co  topic_so     22
# # ... with 32 more rows

The process does the following:

You get all column names (from original dataset) that match "brands" and "topic" and create all possible combinations between them.

For each combination, you get the corresponding columns of your original dataset and count how many times they are both TRUE.

An alternative could be to use a vectorised function instead of rowwise, which might be faster:

# vectorised function
GetVolume = function(x,y) sum(dt[x] == "TRUE" & dt[y] == "TRUE")
GetVolume = Vectorize(GetVolume)

expand.grid(brand = names(dt)[grepl("brands", names(dt))],         
            topic = names(dt)[grepl("topic", names(dt))],
            stringsAsFactors = F) %>%
  mutate(volume = GetVolume(brand, topic)) 



回答2:


Another tidyverse solution:

library(tidyverse)

## data    
head(df)
#>   topic_su topic_so topic_cl topic_in topic_qu topic_re brands_ne
#> 1     TRUE    FALSE    FALSE    FALSE    FALSE    FALSE      TRUE
#> 2     TRUE    FALSE    FALSE    FALSE    FALSE    FALSE      TRUE
#> 3     TRUE     TRUE    FALSE    FALSE    FALSE    FALSE      TRUE
#> 4     TRUE     TRUE    FALSE    FALSE    FALSE    FALSE      TRUE
#> 5     TRUE     TRUE    FALSE    FALSE    FALSE    FALSE      TRUE
#> 6     TRUE     TRUE    FALSE    FALSE    FALSE    FALSE      TRUE
#>   brands_st brands_co brands_seg brands_sen brands_ta brands_tc
#> 1     FALSE     FALSE      FALSE       TRUE     FALSE     FALSE
#> 2     FALSE     FALSE      FALSE       TRUE     FALSE     FALSE
#> 3     FALSE     FALSE      FALSE       TRUE     FALSE     FALSE
#> 4     FALSE     FALSE      FALSE       TRUE     FALSE     FALSE
#> 5     FALSE     FALSE      FALSE       TRUE     FALSE     FALSE
#> 6     FALSE     FALSE      FALSE       TRUE     FALSE     FALSE

mutate_all(df, as.logical) %>%
    gather(key = "topic", value = "topic_value", starts_with("topic")) %>%
    gather(key = "variable_2", value = "variable_2_value", -starts_with("topic")) %>%
    group_by(topic, variable_2) %>%
    summarize(volume = sum(topic_value & variable_2_value))
#> # A tibble: 42 x 3
#> # Groups:   topic [6]
#>    topic    variable_2 volume
#>    <chr>    <chr>       <int>
#>  1 topic_cl brands_co      22
#>  2 topic_cl brands_ne      16
#>  3 topic_cl brands_seg     15
#>  4 topic_cl brands_sen     15
#>  5 topic_cl brands_st       0
#>  6 topic_cl brands_ta       1
#>  7 topic_cl brands_tc       0
#>  8 topic_in brands_co      23
#>  9 topic_in brands_ne      16
#> 10 topic_in brands_seg     15
#> # … with 32 more rows

Created on 2019-06-24 by the reprex package (v0.3.0)



来源:https://stackoverflow.com/questions/56736046/summarise-logical-dataframe-with-dplyr

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!