问题
how can I slice a 3x3 shape numpy array in periodic conditions.
for example, for simplicity its in one dimension:
import numpy as np
a = np.array(range(10))
if the slice is within the length of the array it is straightforward
sub = a[2:8]
the result is array([2, 3, 4, 5, 6, 7])
. Now if I need to slice from 7 to 5 ...
sub = a[7:5]
the result is obviously array([], dtype=int32)
. But what I need is array([7,8,9,0,1,2,3,4])
Is there any efficient way to do so ?
回答1:
I think what you're looking for is: numpy.roll (http://docs.scipy.org/doc/numpy/reference/generated/numpy.roll.html)
回答2:
Likewise a good and easy way of doing a rolled or slicing or slicing in periodic conditions is by using the modulo and the numpy.reshape. for example
import numpy as np
a = np.random.random((3,3,3))
array([[[ 0.98869832, 0.56508155, 0.05431135],
[ 0.59721238, 0.62269635, 0.78196073],
[ 0.03046364, 0.25689747, 0.85072087]],
[[ 0.63096169, 0.66061845, 0.88362948],
[ 0.66854665, 0.02621923, 0.41399149],
[ 0.72104873, 0.45633403, 0.81190428]],
[[ 0.42368236, 0.11258298, 0.27987449],
[ 0.65115635, 0.42433058, 0.051015 ],
[ 0.60465148, 0.12601221, 0.46014229]]])
lets say we need to slice [0:3, -1:1, 0:3] where 3:1 is a rolled slice.
a[0:3, -1:1, 0:3]
array([], shape=(3, 0, 3), dtype=float64)
This is very normal. the solution is:
sl0 = np.array(range(0,3)).reshape(-1,1, 1)%a.shape[0]
sl1 = np.array(range(-1,1)).reshape(1,-1, 1)%a.shape[1]
sl2 = np.array(range(0,3)).reshape(1,1,-1)%a.shape[2]
a[sl0,sl1,sl2]
array([[[ 0.03046364, 0.25689747, 0.85072087],
[ 0.98869832, 0.56508155, 0.05431135]],
[[ 0.72104873, 0.45633403, 0.81190428],
[ 0.63096169, 0.66061845, 0.88362948]],
[[ 0.60465148, 0.12601221, 0.46014229],
[ 0.42368236, 0.11258298, 0.27987449]]])
来源:https://stackoverflow.com/questions/15113181/slicing-numpy-array-in-periodic-conditions