Why does StandardScaler not attach metadata to the output column?

妖精的绣舞 提交于 2019-11-28 01:38:36

While discarding metadata is probably not the most fortunate choice, scaling indexed categorical features doesn't make any sense. Values returned by the StringIndexer are just labels.

If you want to scale numerical features, it should be a separate stage:

val numericAssembler: VectorAssembler = new VectorAssembler()
  .setInputCols(Array("v0", "v1", "v2", "v3", "v4", "v5", "v6"))
  .setOutputCol("numericFeatures")

val scaler = new StandardScaler()
  .setInputCol("numericFeatures")
  .setOutputCol("scaledNumericFeatures")

val finalAssembler: VectorAssembler = new VectorAssembler() 
  .setInputCols(Array("scaledNumericFeatures", "v7_IDX"))
  .setOutputCol("features")

new Pipeline()
  .setStages(Array(strId1, strId2, numericAssembler, scaler, finalAssembler))
  .fit(df)

Keeping in mind concerns raised at the beginning of this answer, you can also try copying the metadata:

val result = plm.transform(df).transform(df => 
  df.withColumn(
   "scaledFeatures", 
   $"scaledFeatures".as(
     "scaledFeatures", 
     df.schema("featuresRaw").metadata)))

esult.schema("scaledFeatures").metadata
{"ml_attr":{"attrs":{"numeric":[{"idx":0,"name":"v0"},{"idx":1,"name":"v1"},{"idx":2,"name":"v2"},{"idx":3,"name":"v3"},{"idx":4,"name":"v4"},{"idx":5,"name":"v5"},{"idx":6,"name":"v6"}],"nominal":[{"vals":["ford","chevrolet","plymouth","dodge","amc","toyota","datsun","vw","buick","pontiac","honda","mazda","mercury","oldsmobile","peugeot","fiat","audi","chrysler","volvo","opel","subaru","saab","mercedes","renault","cadillac","bmw","triumph","hi","capri","nissan"],"idx":7,"name":"v7_IDX"}]},"num_attrs":8}}
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!