Pipeline: Multiple classifiers?

爷,独闯天下 提交于 2019-11-28 01:34:33

问题


I read following example on Pipelines and GridSearchCV in Python: http://www.davidsbatista.net/blog/2017/04/01/document_classification/

Logistic Regression:

pipeline = Pipeline([
    ('tfidf', TfidfVectorizer(stop_words=stop_words)),
    ('clf', OneVsRestClassifier(LogisticRegression(solver='sag')),
])
parameters = {
    'tfidf__max_df': (0.25, 0.5, 0.75),
    'tfidf__ngram_range': [(1, 1), (1, 2), (1, 3)],
    "clf__estimator__C": [0.01, 0.1, 1],
    "clf__estimator__class_weight": ['balanced', None],
}

SVM:

pipeline = Pipeline([
    ('tfidf', TfidfVectorizer(stop_words=stop_words)),
    ('clf', OneVsRestClassifier(LinearSVC()),
])
parameters = {
    'tfidf__max_df': (0.25, 0.5, 0.75),
    'tfidf__ngram_range': [(1, 1), (1, 2), (1, 3)],
    "clf__estimator__C": [0.01, 0.1, 1],
    "clf__estimator__class_weight": ['balanced', None],
}

Is there a way that Logistic Regression and SVM could be combined into one Pipeline? Say, I have a TfidfVectorizer and like to test against multiple classifiers that each then output the best model/parameters.


回答1:


Here is an easy way to optimize over any classifier and for each classifier any settings of parameters.

Create a switcher class that works for any estimator

from sklearn.base import BaseEstimator
class ClfSwitcher(BaseEstimator):

def __init__(
    self, 
    estimator = SGDClassifier(),
):
    """
    A Custom BaseEstimator that can switch between classifiers.
    :param estimator: sklearn object - The classifier
    """ 

    self.estimator = estimator


def fit(self, X, y=None, **kwargs):
    self.estimator.fit(X, y)
    return self


def predict(self, X, y=None):
    return self.estimator.predict(X)


def predict_proba(self, X):
    return self.estimator.predict_proba(X)


def score(self, X, y):
    return self.estimator.score(X, y)

Now you can pass in anything for the estimator parameter. And you can optimize any parameter for any estimator you pass in as follows:

Perform hyper-parameter optimization

from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import SGDClassifier
from sklearn.pipeline import Pipeline
from sklearn.model_selection import GridSearchCV

pipeline = Pipeline([
    ('tfidf', TfidfVectorizer()),
    ('clf', ClfSwitcher()),
])

parameters = [
    {
        'clf__estimator': [SGDClassifier()], # SVM if hinge loss / logreg if log loss
        'tfidf__max_df': (0.25, 0.5, 0.75, 1.0),
        'tfidf__stop_words': ['english', None],
        'clf__estimator__penalty': ('l2', 'elasticnet', 'l1'),
        'clf__estimator__max_iter': [50, 80],
        'clf__estimator__tol': [1e-4],
        'clf__estimator__loss': ['hinge', 'log', 'modified_huber'],
    },
    {
        'clf__estimator': [MultinomialNB()],
        'tfidf__max_df': (0.25, 0.5, 0.75, 1.0),
        'tfidf__stop_words': [None],
        'clf__estimator__alpha': (1e-2, 1e-3, 1e-1),
    },
]

gscv = GridSearchCV(pipeline, parameters, cv=5, n_jobs=12, return_train_score=False, verbose=3)
gscv.fit(train_data, train_labels)

How to interpret clf__estimator__loss

clf__estimator__loss is interpreted as the loss parameter for whatever estimator is, where estimator = SGDClassifier() in the top most example and is itself a parameter of clf which is a ClfSwitcher object.




回答2:


Yes, you can do that by building a wrapper function. The idea is to pass it two dictionaries: the models and the the parameters;

Then you iteratively call the models with all the parameters to test, using GridSearchCV for this.

Check this example, there is added extra functionality so that at the end you output a data frame with the summary of the different models/parameters and different performance scores.

EDIT: It's too much code to paste here, you can check a full working example here:

http://www.davidsbatista.net/blog/2018/02/23/model_optimization/



来源:https://stackoverflow.com/questions/50285973/pipeline-multiple-classifiers

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!