问题
I want to group a dataset and return the maximum and minimum timestamp. Here's my data
id timestamp
1 2017-09-17 10:09:01
2 2017-10-02 01:13:15
1 2017-09-17 10:53:07
1 2017-09-17 10:52:18
2 2017-09-12 21:59:40
Here's the output that i want
id max min
1 2017-09-17 10:53:07 2017-09-17 10:09:01
2 2017-10-02 01:13:15 2017-09-12 21:59:40
Here's what I did, the code seems not efficient, I hope theres better way to do this on pandas
data1 = df.sort_values('timestamp').drop_duplicates(['customer_id'], keep='last')
data2 = df.sort_values('timestamp').drop_duplicates(['customer_id'], keep='first')
data1['max'] = data1['timestamp']
data2['min'] = data2['timestamp']
data = data1.merge(data2, on = 'customer_id', how='left')
data = data.drop(['timestamp_x','timestamp_y'], axis=1)
It seems that pandas have this type of pivot
回答1:
I think need agg:
df = df.groupby('id')['timestamp'].agg(['min','max']).reset_index()
print (df)
id min max
0 1 2017-09-17 10:09:01 2017-09-17 10:53:07
1 2 2017-09-12 21:59:40 2017-10-02 01:13:15
Or a bit modify your solution (should be faster):
data = df.sort_values('timestamp')
data1 = data.drop_duplicates(['id'], keep='last').set_index('id')
data2 = data.drop_duplicates(['id'], keep='first').set_index('id')
df = pd.concat([data1['timestamp'], data2['timestamp']],keys=('max','min'), axis=1)
print (df)
max min
id
1 2017-09-17 10:53:07 2017-09-17 10:09:01
2 2017-10-02 01:13:15 2017-09-12 21:59:40
来源:https://stackoverflow.com/questions/49666085/how-do-i-group-max-and-min-timestamp-on-pandas-dataframe