Pivot row to column level

只愿长相守 提交于 2021-02-04 21:48:22

问题


I have a spark dataframe t which is the result of a spark.sql("...") query. Here is the first few rows from t:

| yyyy_mm_dd | x_id | x_name      | b_app   | status        | has_policy | count |
|------------|------|-------------|---------|---------------|------------|-------|
| 2020-08-18 | 1    | first_name  | content | no_contact    | 1          | 23    |
| 2020-08-18 | 1    | first_name  | content | no_contact    | 0          | 346   |
| 2020-08-18 | 2    | second_name | content | implemented   | 1          | 64    |
| 2020-08-18 | 2    | second_name | content | implemented   | 0          | 5775  |
| 2020-08-18 | 3    | third_name  | content | implemented   | 1          | 54    |
| 2020-08-18 | 3    | third_name  | content | implemented   | 0          | 368   |
| 2020-08-18 | 4    | fourth_name | content | first_contact | 1          | 88    |
| 2020-08-18 | 4    | fourth_name | content | first_contact | 0          | 659   |

There is two rows per x_id and this is due to grouping on has_policy. I would like to pivot has_policy and count to columns so I can have one row per x_id instead. This is how the output would look:

| yyyy_mm_dd | x_id | x_name      | b_app   | status        | has_policy_count | has_no_policy_count |
|------------|------|-------------|---------|---------------|------------------|---------------------|
| 2020-08-18 | 1    | first_name  | content | no_contact    | 23               | 346                 |
| 2020-08-18 | 2    | second_name | content | implemented   | 64               | 5775                |
| 2020-08-18 | 3    | third_name  | content | implemented   | 54               | 368                 |
| 2020-08-18 | 4    | fourth_name | content | first_contact | 88               | 659                 |

I'm not sure if it would be easier to achieve this by converting to Pandas first or if we can operate on the Spark df as it is to get the same result?


Data types:

t.dtypes
[('yyyy_mm_dd', 'date'),
 ('xml_id', 'int'),
 ('xml_name', 'string'),
 ('b_app', 'string'),
 ('status', 'string'),
 ('has_policy', 'bigint'),
 ('count', 'bigint')]

回答1:


Assuming df is your dataframe. pivot is quite straight forward to use when you read the doc.

df.groupBy(
    "yyyy_mm_dd", "x_id", "x_name", "b_app", "status"
).pivot("has_policy", [0, 1]).sum("count")


来源:https://stackoverflow.com/questions/63684957/pivot-row-to-column-level

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!