问题
I have a list of several data.frames. Each data.frame has several columns.
By using
mean(mylist$first_dataframe$a
I can get the mean for a in this one data.frame.
However I do not know how to calculate over all the data.frames stored in my list or how for specific data.frames.
I could use a loop but I was told that
apply()
and its variations are better
I tried using several solutions I found via search but somehow it just doesn't work.
I assume I need to use
unlist()
Could you provide an example of how to calculate e.g. a mean for a data structure like mine. A list with several data.frames containing several columns.
Update: I'm sorry for the confusion. I wanted the grand mean for a specific column in all dataframes. Thanks to Thomas for providing a working solution for calculating a grand mean for a specific column in all dataframes and to psychometriko for providing a useful solution for calculating means over all columns in all dataframes (& even for the case when not numeric data is involved).
Thanks!
回答1:
Is this what you are looking for?
set.seed(42)
mylist <- list(a=data.frame(foo=rnorm(10),
bar=rnorm(10)),
b=data.frame(foo=rnorm(10),
bar=rnorm(10)),
c=data.frame(foo=rnorm(10),
bar=rnorm(10)))
sapply(do.call("rbind",mylist),mean)
foo bar
0.1163340 -0.1696556
Note: do.call("rbind",mylist)
returns something similar to what you referred to above with the unlist
function, and then sapply
, as referred to by Roland in his answer, just calls the function mean
on each component (column) of the data.frame that results from the above do.call
function.
Edit: In response to the question of how to deal with non-numeric data.frame components, the below solution admittedly isn't very elegant and I'm sure better ones exist, but here's the first thing I was able to think of:
set.seed(42)
mylist <- list(a=data.frame(rand=rnorm(10),
lets=sample(LETTERS,10,replace=TRUE)),
b=data.frame(rand=rnorm(10),
lets=sample(LETTERS,10,replace=TRUE)),
c=data.frame(rand=rnorm(10),
lets=sample(LETTERS,10,replace=TRUE)))
sapply(do.call("rbind",mylist),function(x) {
if (is.numeric(x)) mean(x)
})
$rand
[1] -0.02470602
$lets
NULL
This basically just creates a custom function that first tests whether each component is numeric and, if it is, returns the mean. If it isn't, it skips it.
回答2:
The whole do.call('rbind', List)
thing can be quite slow and prone to mishaps. If there is only one column you need the mean for, the best way is:
mean(sapply(mylist, function(X) X$rand))
It's about 10x faster the the do.call
method.
来源:https://stackoverflow.com/questions/17146523/calculate-e-g-a-mean-in-a-list-with-multi-column-data-frames