问题
I have two matrices of the same size, A, B. I want to use the columns of B to acsses the columns of A, on a per column basis. For example,
A = np.array([[1, 4, 7],
[2, 5, 8],
[3, 6, 9]])
and
B = np.array([[0, 0, 2],
[1, 2, 1],
[2, 1, 0]])
I want something like:
A[B] = [[1, 4, 9],
[2, 6, 8],
[3, 5, 7]]
I.e., I've used the j'th column of B as indices to the j'th column of A. Is there any effiecnt way of doing so? Thanks!
回答1:
You can use advanced indexing:
A[B, np.arange(A.shape[0])]
array([[1, 4, 9],
[2, 6, 8],
[3, 5, 7]])
Or with np.take_along_axis:
np.take_along_axis(A, B, axis=0)
array([[1, 4, 9],
[2, 6, 8],
[3, 5, 7]])
来源:https://stackoverflow.com/questions/61172273/efficient-per-column-matrix-indexing-in-numpy