Process finished with exit code 137 (interrupted by signal 9: SIGKILL)

不想你离开。 提交于 2021-01-29 05:23:01

问题


I have added a large-scale key values pairs in python file which is about 20000 and i got below error after running a code.

Trace

(236167, 3)
Process finished with exit code 137 (interrupted by signal 9: SIGKILL)

File.py

import pandas as pd
import cupy.cuda as np
import itertools
from sklearn import metrics
from sklearn.metrics import confusion_matrix, accuracy_score, roc_curve, auc
import matplotlib.pyplot as plt
from tqdm import tqdm

np.Device(0).use()


# --------------------------
# Data set

# Ref: https://github.com/serengil/deepface/tree/master/tests/dataset
idendities = {
    "AnneBancroft": [
        "13859_AnneBancroft_25_f.jpg",
        "13872_AnneBancroft_73_f.jpg",
        "13864_AnneBancroft_31_f.jpg",
        "13870_AnneBancroft_61_f.jpg",
        "13844_AnneBancroft_67_f.jpg",
        "13863_AnneBancroft_22_f.jpg",
        "13869_AnneBancroft_72_f.jpg",
        "13843_AnneBancroft_60_f.jpg",
        "13868_AnneBancroft_71_f.jpg",
        "13860_AnneBancroft_66_f.jpg",
        "13853_AnneBancroft_49_f.jpg",
        "13842_AnneBancroft_51_f.jpg",
        "13874_AnneBancroft_73_f.jpg",
        "13846_AnneBancroft_44_f.jpg",
        "13871_AnneBancroft_35_f.jpg",
        "13857_AnneBancroft_24_f.jpg",
        "13850_AnneBancroft_53_f.jpg",
        "13865_AnneBancroft_41_f.jpg",
        "13862_AnneBancroft_46_f.jpg",
        "13852_AnneBancroft_69_f.jpg",
        "13866_AnneBancroft_68_f.jpg",
        "13873_AnneBancroft_25_f.jpg",
        "13861_AnneBancroft_23_f.jpg",
        "13848_AnneBancroft_52_f.jpg",
        "13847_AnneBancroft_33_f.jpg",
        "13851_AnneBancroft_28_f.jpg",
        "13856_AnneBancroft_25_f.jpg",
        "13845_AnneBancroft_31_f.jpg",
        "13867_AnneBancroft_70_f.jpg",
        "13854_AnneBancroft_70_f.jpg",
        "13849_AnneBancroft_61_f.jpg",
        "13855_AnneBancroft_28_f.jpg",
        "13858_AnneBancroft_22_f.jpg"
    ],
    "RoseMarie": [
        "9907_RoseMarie_82_f.jpg",
        "9893_RoseMarie_35_f.jpg",
        "9911_RoseMarie_88_f.jpg",
        "9906_RoseMarie_80_f.jpg",
        "9895_RoseMarie_40_f.jpg",
        "9901_RoseMarie_57_f.jpg",
        "9903_RoseMarie_77_f.jpg",
        "9892_RoseMarie_30_f.jpg",
        "9909_RoseMarie_85_f.jpg",
        "9900_RoseMarie_52_f.jpg",
        "9897_RoseMarie_44_f.jpg",
        "9904_RoseMarie_78_f.jpg",
        "9905_RoseMarie_79_f.jpg",
        "9898_RoseMarie_46_f.jpg",
        "9908_RoseMarie_83_f.jpg",
        "9902_RoseMarie_70_f.jpg",
        "9896_RoseMarie_42_f.jpg",
        "9899_RoseMarie_50_f.jpg",
        "9910_RoseMarie_87_f.jpg",
        "9894_RoseMarie_37_f.jpg"
    ],
    "BobDylan": [
        "1665_BobDylan_35_m.jpg",
        "1651_BobDylan_23_m.jpg",
        "1663_BobDylan_33_m.jpg",
        "1682_BobDylan_64_m.jpg",
        "1678_BobDylan_56_m.jpg",
        "1684_BobDylan_68_m.jpg",
        "1686_BobDylan_72_m.jpg",
        "1645_BobDylan_16_m.jpg",
        "1664_BobDylan_34_m.jpg",
        "1680_BobDylan_61_m.jpg",
        "1674_BobDylan_47_m.jpg",
        "1656_BobDylan_26_m.jpg",
        "1658_BobDylan_28_m.jpg",
        "1667_BobDylan_40_m.jpg",
        "1673_BobDylan_46_m.jpg",
        "1668_BobDylan_41_m.jpg",
        "1657_BobDylan_27_m.jpg",
        "1685_BobDylan_71_m.jpg",
        "1647_BobDylan_19_m.jpg",
        "1660_BobDylan_30_m.jpg",
        "1679_BobDylan_57_m.jpg",
        "1672_BobDylan_45_m.jpg",
        "1666_BobDylan_37_m.jpg",
        "1650_BobDylan_22_m.jpg",
        "1683_BobDylan_66_m.jpg",
        "1652_BobDylan_23_m.jpg",
        "1654_BobDylan_24_m.jpg",
        "1687_BobDylan_74_m.jpg",
        "1649_BobDylan_21_m.jpg",
        "1677_BobDylan_54_m.jpg",
        "1659_BobDylan_29_m.jpg",
        "1675_BobDylan_48_m.jpg",
        "1662_BobDylan_32_m.jpg",
        "1671_BobDylan_44_m.jpg",
        "1669_BobDylan_42_m.jpg",
        "1653_BobDylan_24_m.jpg",
        "1648_BobDylan_20_m.jpg",
        "1681_BobDylan_62_m.jpg",
        "1661_BobDylan_31_m.jpg",
        "1670_BobDylan_43_m.jpg",
        "1655_BobDylan_25_m.jpg",
        "1676_BobDylan_49_m.jpg",
        "1646_BobDylan_18_m.jpg"
    ],
    "LorneGreene": [
        "8137_LorneGreene_25_m.jpg",
        "8145_LorneGreene_48_m.jpg",
        "8140_LorneGreene_38_m.jpg",
        "8138_LorneGreene_28_m.jpg",
        "8139_LorneGreene_33_m.jpg",
        "8149_LorneGreene_52_m.jpg",
        "8154_LorneGreene_58_m.jpg",
        "8142_LorneGreene_44_m.jpg",
        "8162_LorneGreene_68_m.jpg",
        "8155_LorneGreene_61_m.jpg",
        "8164_LorneGreene_71_m.jpg",
        "8147_LorneGreene_50_m.jpg",
        "8151_LorneGreene_54_m.jpg",
        "8163_LorneGreene_70_m.jpg",
        "8150_LorneGreene_53_m.jpg",
        "8156_LorneGreene_62_m.jpg",
        "8160_LorneGreene_66_m.jpg",
        "8146_LorneGreene_49_m.jpg",
        "8144_LorneGreene_46_m.jpg",
        "8158_LorneGreene_64_m.jpg",
        "8152_LorneGreene_55_m.jpg",
        "8159_LorneGreene_65_m.jpg",
        "8161_LorneGreene_67_m.jpg",
        "8157_LorneGreene_63_m.jpg",
        "8141_LorneGreene_43_m.jpg",
        "8143_LorneGreene_45_m.jpg",
        "8136_LorneGreene_18_m.jpg",
        "8153_LorneGreene_57_m.jpg",
        "8148_LorneGreene_51_m.jpg"
    ],
    "LaurenBacall": [
        "11540_LaurenBacall_26_f.jpg",
        "11539_LaurenBacall_25_f.jpg",
        "11547_LaurenBacall_45_f.jpg",
        "11549_LaurenBacall_72_f.jpg",
        "11534_LaurenBacall_20_f.jpg",
        "11559_LaurenBacall_31_f.jpg",
        "11545_LaurenBacall_35_f.jpg",
        "11546_LaurenBacall_40_f.jpg",
        "11563_LaurenBacall_64_f.jpg",
        "11555_LaurenBacall_82_f.jpg",
        "11541_LaurenBacall_31_f.jpg",
        "11564_LaurenBacall_27_f.jpg",
        "11561_LaurenBacall_57_f.jpg",
        "11552_LaurenBacall_75_f.jpg",
        "11556_LaurenBacall_83_f.jpg",
        "11543_LaurenBacall_31_f.jpg",
        "11533_LaurenBacall_19_f.jpg",
        "11557_LaurenBacall_85_f.jpg",
        "11544_LaurenBacall_34_f.jpg",
        "11535_LaurenBacall_21_f.jpg",
        "11565_LaurenBacall_26_f.jpg",
        "11558_LaurenBacall_42_f.jpg",
        "11531_LaurenBacall_28_f.jpg",
        "11536_LaurenBacall_22_f.jpg",
        "11562_LaurenBacall_46_f.jpg",
        "11554_LaurenBacall_81_f.jpg",
        "11542_LaurenBacall_31_f.jpg",
        "11537_LaurenBacall_22_f.jpg",
        "11560_LaurenBacall_56_f.jpg",
        "11548_LaurenBacall_65_f.jpg",
        "11550_LaurenBacall_73_f.jpg",
        "11530_LaurenBacall_17_f.jpg",
        "11532_LaurenBacall_18_f.jpg",
        "11566_LaurenBacall_20_f.jpg",
        "11551_LaurenBacall_77_f.jpg",
        "11538_LaurenBacall_23_f.jpg",
        "11553_LaurenBacall_80_f.jpg"
    ],
    "SerenaWilliams": [
        "16468_SerenaWilliams_32_f.jpg",
        "16486_SerenaWilliams_32_f.jpg",
        "16479_SerenaWilliams_25_f.jpg",
        "16474_SerenaWilliams_18_f.jpg",
        "16472_SerenaWilliams_21_f.jpg",
        "16008_SerenaWilliams_36_f.jpg",
        "16484_SerenaWilliams_31_f.jpg",
        "16469_SerenaWilliams_31_f.jpg",
        "16478_SerenaWilliams_24_f.jpg",
        "16485_SerenaWilliams_32_f.jpg",
        "16480_SerenaWilliams_26_f.jpg",
        "16481_SerenaWilliams_27_f.jpg",
        "16487_SerenaWilliams_33_f.jpg",
        "16477_SerenaWilliams_23_f.jpg",
        "16010_SerenaWilliams_34_f.jpg",
        "16483_SerenaWilliams_30_f.jpg",
        "16471_SerenaWilliams_29_f.jpg",
        "16009_SerenaWilliams_35_f.jpg",
        "16476_SerenaWilliams_20_f.jpg",
        "16475_SerenaWilliams_19_f.jpg",
        "16482_SerenaWilliams_28_f.jpg",
        "16007_SerenaWilliams_36_f.jpg",
        "16470_SerenaWilliams_35_f.jpg",
        "16473_SerenaWilliams_24_f.jpg"
    ],
    "JohnVernon": [
        "6459_JohnVernon_49_m.jpg",
        "6447_JohnVernon_33_m.jpg",
        "6446_JohnVernon_32_m.jpg",
        "6448_JohnVernon_34_m.jpg",
        "6454_JohnVernon_40_m.jpg",
        "6452_JohnVernon_38_m.jpg",
        "6471_JohnVernon_71_m.jpg",
        "6468_JohnVernon_60_m.jpg",
        "6469_JohnVernon_63_m.jpg",
        "6458_JohnVernon_47_m.jpg",
        "6463_JohnVernon_53_m.jpg",
        "6444_JohnVernon_30_m.jpg",
        "6457_JohnVernon_46_m.jpg",
        "6456_JohnVernon_42_m.jpg",
        "6462_JohnVernon_52_m.jpg",
        "6464_JohnVernon_54_m.jpg",
        "6451_JohnVernon_37_m.jpg",
        "6449_JohnVernon_35_m.jpg",
        "6470_JohnVernon_67_m.jpg",
        "6445_JohnVernon_31_m.jpg",
        "6461_JohnVernon_51_m.jpg",
        "6450_JohnVernon_36_m.jpg",
        "6460_JohnVernon_50_m.jpg",
        "6455_JohnVernon_41_m.jpg",
        "6466_JohnVernon_57_m.jpg",
        "6465_JohnVernon_56_m.jpg",
        "6453_JohnVernon_39_m.jpg",
        "6467_JohnVernon_58_m.jpg"
    ],
    "JamesStewart": [
        "8647_JamesStewart_45_m.jpg",
        "8657_JamesStewart_29_m.jpg",
        "8644_JamesStewart_32_m.jpg",
        "8639_JamesStewart_28_m.jpg",
        "8645_JamesStewart_38_m.jpg",
        "8642_JamesStewart_31_m.jpg",
        "8643_JamesStewart_32_m.jpg",
        "8652_JamesStewart_69_m.jpg",
        "8655_JamesStewart_32_m.jpg",
        "8638_JamesStewart_26_m.jpg",
        "8658_JamesStewart_41_m.jpg",
        "8646_JamesStewart_40_m.jpg",
        "8641_JamesStewart_31_m.jpg",
        "8650_JamesStewart_65_m.jpg",
        "8656_JamesStewart_32_m.jpg",
        "8651_JamesStewart_68_m.jpg",
        "8654_JamesStewart_34_m.jpg",
        "8637_JamesStewart_86_m.jpg",
        "8640_JamesStewart_30_m.jpg",
        "8649_JamesStewart_52_m.jpg",
        "8653_JamesStewart_41_m.jpg",
        "8648_JamesStewart_51_m.jpg"
    ],
    "JoanLeslie": [
        "10177_JoanLeslie_35_f.jpg",
        "10181_JoanLeslie_50_f.jpg",
        "10182_JoanLeslie_59_f.jpg",
        "10167_JoanLeslie_21_f.jpg",
        "10184_JoanLeslie_77_f.jpg",
        "10175_JoanLeslie_32_f.jpg",
        "10170_JoanLeslie_25_f.jpg",
        "10166_JoanLeslie_19_f.jpg",
        "10188_JoanLeslie_83_f.jpg",
        "10168_JoanLeslie_22_f.jpg",
        "10174_JoanLeslie_30_f.jpg",
        "10173_JoanLeslie_29_f.jpg",
        "10165_JoanLeslie_17_f.jpg",
        "10190_JoanLeslie_87_f.jpg",
        "10171_JoanLeslie_26_f.jpg",
        "10183_JoanLeslie_74_f.jpg",
        "10163_JoanLeslie_13_f.jpg",
        "10189_JoanLeslie_84_f.jpg",
        "10172_JoanLeslie_28_f.jpg",
        "10185_JoanLeslie_78_f.jpg",
        "10187_JoanLeslie_81_f.jpg",
        "10169_JoanLeslie_23_f.jpg",
        "10164_JoanLeslie_16_f.jpg",
        "10179_JoanLeslie_38_f.jpg",
        "10180_JoanLeslie_45_f.jpg",
        "10178_JoanLeslie_36_f.jpg",
        "10176_JoanLeslie_33_f.jpg",
        "10186_JoanLeslie_80_f.jpg"
    ],
    "MelindaDillion": [
        "12321_MelindaDillion_57_f.jpg",
        "12310_MelindaDillion_41_f.jpg",
        "12307_MelindaDillion_38_f.jpg",
        "12304_MelindaDillion_30_f.jpg",
        "12323_MelindaDillion_63_f.jpg",
        "12314_MelindaDillion_45_f.jpg",
        "12324_MelindaDillion_64_f.jpg",
        "12327_MelindaDillion_70_f.jpg",
        "12312_MelindaDillion_43_f.jpg",
        "12306_MelindaDillion_37_f.jpg",
        "12316_MelindaDillion_47_f.jpg",
        "12319_MelindaDillion_54_f.jpg",
        "12305_MelindaDillion_34_f.jpg",
        "12325_MelindaDillion_66_f.jpg",
        "12309_MelindaDillion_40_f.jpg",
        "12313_MelindaDillion_44_f.jpg",
        "12311_MelindaDillion_42_f.jpg",
        "12326_MelindaDillion_68_f.jpg",
        "12303_MelindaDillion_29_f.jpg",
        "12320_MelindaDillion_55_f.jpg",
        "12317_MelindaDillion_48_f.jpg",
        "12315_MelindaDillion_46_f.jpg",
        "12322_MelindaDillion_59_f.jpg",
        "12308_MelindaDillion_39_f.jpg",
        "12328_MelindaDillion_73_f.jpg",
        "12318_MelindaDillion_50_f.jpg"
    ],
    "StephenHawking": [
        "1020_StephenHawking_65_m.jpg",
        "1004_StephenHawking_43_m.jpg",
        "1017_StephenHawking_65_m.jpg",
        "1014_StephenHawking_67_m.jpg",
        "1006_StephenHawking_36_m.jpg",
        "1000_StephenHawking_1_m.jpg",
        "1018_StephenHawking_66_m.jpg",
        "1005_StephenHawking_23_m.jpg",
        "1007_StephenHawking_43_m.jpg",
        "1012_StephenHawking_67_m.jpg",
        "1024_StephenHawking_54_m.jpg",
        "1002_StephenHawking_15_m.jpg",
        "1019_StephenHawking_53_m.jpg",
        "1022_StephenHawking_48_m.jpg",
        "1003_StephenHawking_21_m.jpg",
        "1010_StephenHawking_62_m.jpg",
        "1009_StephenHawking_46_m.jpg",
        "1008_StephenHawking_43_m.jpg",
        "1016_StephenHawking_53_m.jpg",
        "1001_StephenHawking_3_m.jpg",
        "1011_StephenHawking_64_m.jpg",
        "1015_StephenHawking_40_m.jpg",
        "1021_StephenHawking_64_m.jpg",
        "1013_StephenHawking_67_m.jpg",
        "1023_StephenHawking_45_m.jpg"
    ]
}
# --------------------------
# Positives

positives = []

for key, values in idendities.items():

    # print(key)
    for i in range(0, len(values) - 1):
        for j in range(i + 1, len(values)):
            # print(values[i], " and ", values[j])
            positive = []
            positive.append(values[i])
            positive.append(values[j])
            positives.append(positive)

positives = pd.DataFrame(positives, columns=["file_x", "file_y"])
positives["decision"] = "Yes"
print(positives.shape)
# --------------------------
# Negatives

samples_list = list(idendities.values())

negatives = []

for i in range(0, len(idendities) - 1):
    for j in range(i + 1, len(idendities)):
        # print(samples_list[i], " vs ",samples_list[j])
        cross_product = itertools.product(samples_list[i], samples_list[j])
        cross_product = list(cross_product)
        # print(cross_product)

        for cross_sample in cross_product:
            # print(cross_sample[0], " vs ", cross_sample[1])
            negative = []
            negative.append(cross_sample[0])
            negative.append(cross_sample[1])
            negatives.append(negative)

negatives = pd.DataFrame(negatives, columns=["file_x", "file_y"])
negatives["decision"] = "No"

negatives = negatives.sample(positives.shape[0])

print(negatives.shape)
# --------------------------
# Merge positive and negative ones

df = pd.concat([positives, negatives]).reset_index(drop=True)

print(df.decision.value_counts())

df.file_x = "deepface/tests/dataset/" + df.file_x
df.file_y = "deepface/tests/dataset/" + df.file_y
# --------------------------
# DeepFace

from deepface import DeepFace
from deepface.basemodels import VGGFace, OpenFace, Facenet, FbDeepFace

pretrained_models = {}

pretrained_models["VGG-Face"] = VGGFace.loadModel()
print("VGG-Face loaded")
pretrained_models["Facenet"] = Facenet.loadModel()
print("Facenet loaded")
pretrained_models["OpenFace"] = OpenFace.loadModel()
print("OpenFace loaded")
pretrained_models["DeepFace"] = FbDeepFace.loadModel()
print("FbDeepFace loaded")

instances = df[["file_x", "file_y"]].values.tolist()

models = ['VGG-Face']
metrics = ['cosine']

if True:
    for model in models:
        for metric in metrics:

            resp_obj = DeepFace.verify(instances
                                       , model_name=model
                                       , model=pretrained_models[model]
                                       , distance_metric=metric)

            distances = []

            for i in range(0, len(instances)):
                distance = round(resp_obj["pair_%s" % (i + 1)]["distance"], 4)
                distances.append(distance)

            df['%s_%s' % (model, metric)] = distances

    df.to_csv("face-recognition-pivot.csv", index=False)
else:
    df = pd.read_csv("face-recognition-pivot.csv")

df_raw = df.copy()

# --------------------------
# Distribution

fig = plt.figure(figsize=(15, 15))

figure_idx = 1
for model in models:
    for metric in metrics:
        feature = '%s_%s' % (model, metric)

        ax1 = fig.add_subplot(4, 2, figure_idx)

        df[df.decision == "Yes"][feature].plot(kind='kde', title=feature, label='Yes', legend=True)
        df[df.decision == "No"][feature].plot(kind='kde', title=feature, label='No', legend=True)

        figure_idx = figure_idx + 1

# plt.show()
# --------------------------
# Pre-processing for modelling

columns = []
for model in models:
    for metric in metrics:
        feature = '%s_%s' % (model, metric)
        columns.append(feature)

columns.append("decision")

df = df[columns]

df.loc[df[df.decision == 'Yes'].index, 'decision'] = 1
df.loc[df[df.decision == 'No'].index, 'decision'] = 0

print(df.head())
# --------------------------
# Train test split

from sklearn.model_selection import train_test_split

df_train, df_test = train_test_split(df, test_size=0.30, random_state=17)

target_name = "decision"

y_train = df_train[target_name].values
x_train = df_train.drop(columns=[target_name]).values

y_test = df_test[target_name].values
x_test = df_test.drop(columns=[target_name]).values

# --------------------------
# LightGBM

import lightgbm as lgb

features = df.drop(columns=[target_name]).columns.tolist()
lgb_train = lgb.Dataset(x_train, y_train, feature_name=features)
lgb_test = lgb.Dataset(x_test, y_test, feature_name=features)

params = {
    'task': 'train'
    , 'boosting_type': 'gbdt'
    , 'objective': 'multiclass'
    , 'num_class': 2
    , 'metric': 'multi_logloss'
}

gbm = lgb.train(params, lgb_train, num_boost_round=250, early_stopping_rounds=15, valid_sets=lgb_test)

gbm.save_model("face-recognition-ensemble-model.txt")

# --------------------------
# Evaluation

predictions = gbm.predict(x_test)

predictions_classes = []
for i in predictions:
    prediction_class = np.argmax(i)
    predictions_classes.append(prediction_class)

cm = confusion_matrix(y_test, predictions_classes)
print(cm)

tn, fp, fn, tp = cm.ravel()

recall = tp / (tp + fn)
precision = tp / (tp + fp)
accuracy = (tp + tn) / (tn + fp + fn + tp)
f1 = 2 * (precision * recall) / (precision + recall)

print("Precision: ", 100 * precision, "%")
print("Recall: ", 100 * recall, "%")
print("F1 score ", 100 * f1, "%")
print("Accuracy: ", 100 * accuracy, "%")
# --------------------------
# Interpretability

ax = lgb.plot_importance(gbm, max_num_features=20)
# plt.show()

import os

os.environ["PATH"] += os.pathsep + 'C:/Program Files (x86)/Graphviz2.38/bin'

plt.rcParams["figure.figsize"] = [20, 20]

for i in range(0, gbm.num_trees()):
    ax = lgb.plot_tree(gbm, tree_index=i)
    # plt.show()

    if i == 2:
        break
# --------------------------
# ROC Curve

from sklearn.metrics import confusion_matrix, accuracy_score, roc_auc_score, roc_curve

y_pred_proba = predictions[::, 1]

fpr, tpr, _ = roc_curve(y_test, y_pred_proba)
auc = roc_auc_score(y_test, y_pred_proba)

plt.figure(figsize=(7, 3))
lw = 2

plt.plot([0, 1], [0, 1], color='navy', lw=lw, linestyle='--')
fig.savefig('/home/khawar/deepface/tests/VGG-FACE_Cosine_ROC.png', dpi=fig.dpi)

plt.xlabel('False Positive Rate')
plt.ylabel('True Positive Rate')
plt.title('VGG Face')
plt.plot(fpr, tpr, label="ROC with Cosine auc=" + str(auc))
fig.savefig('/home/khawar/deepface/tests/VGG-FACE_Cosine_ROC_T_F.png', dpi=fig.dpi)

plt.legend(loc=4)
fig.savefig('/home/khawar/deepface/tests/VGG-FACE_Cosine.png', dpi=fig.dpi)
plt.show()
# --------------------------

来源:https://stackoverflow.com/questions/65419970/process-finished-with-exit-code-137-interrupted-by-signal-9-sigkill

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!