spark throws error when reading hive table

谁说胖子不能爱 提交于 2021-01-27 13:56:17

问题


i am trying to do select * from db.abc in hive,this hive table was loaded using spark

it does not work shows an error:

Error: java.io.IOException: java.lang.IllegalArgumentException: bucketId out of range: -1 (state=,code=0)

when i use the following properties i was able to query for hive:

set hive.mapred.mode=nonstrict;
set hive.optimize.ppd=true;
set hive.optimize.index.filter=true;
set hive.tez.bucket.pruning=true;
set hive.explain.user=false; 
set hive.fetch.task.conversion=none;

now when i try to read the same hive table db.abc using spark , i am recieving the error as below:

Clients can access this table only if they have the following capabilities: CONNECTORREAD,HIVEFULLACIDREAD,HIVEFULLACIDWRITE,HIVEMANAGESTATS,HIVECACHEINVALIDATE,CONNECTORWRITE. This table may be a Hive-managed ACID table, or require some other capability that Spark currently does not implement; at org.apache.spark.sql.catalyst.catalog.CatalogUtils$.throwIfNoAccess(ExternalCatalogUtils.scala:280) at org.apache.spark.sql.hive.HiveTranslationLayerCheck$$anonfun$apply$1.applyOrElse(HiveTranslationLayerStrategies.scala:105) at org.apache.spark.sql.hive.HiveTranslationLayerCheck$$anonfun$apply$1.applyOrElse(HiveTranslationLayerStrategies.scala:85) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$transformUp$1.apply(TreeNode.scala:289) at org.apache.spark.sql.catalyst.trees.CurrentOrigin$.withOrigin(TreeNode.scala:70) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:288) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:286) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$3.apply(TreeNode.scala:286) at org.apache.spark.sql.catalyst.trees.TreeNode$$anonfun$4.apply(TreeNode.scala:306) at org.apache.spark.sql.catalyst.trees.TreeNode.mapProductIterator(TreeNode.scala:187) at org.apache.spark.sql.catalyst.trees.TreeNode.mapChildren(TreeNode.scala:304) at org.apache.spark.sql.catalyst.trees.TreeNode.transformUp(TreeNode.scala:286) at org.apache.spark.sql.hive.HiveTranslationLayerCheck.apply(HiveTranslationLayerStrategies.scala:85) at org.apache.spark.sql.hive.HiveTranslationLayerCheck.apply(HiveTranslationLayerStrategies.scala:83) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:87) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1$$anonfun$apply$1.apply(RuleExecutor.scala:84) at scala.collection.LinearSeqOptimized$class.foldLeft(LinearSeqOptimized.scala:124) at scala.collection.immutable.List.foldLeft(List.scala:84) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:84) at org.apache.spark.sql.catalyst.rules.RuleExecutor$$anonfun$execute$1.apply(RuleExecutor.scala:76) at scala.collection.immutable.List.foreach(List.scala:392) at org.apache.spark.sql.catalyst.rules.RuleExecutor.execute(RuleExecutor.scala:76) at org.apache.spark.sql.catalyst.analysis.Analyzer.org$apache$spark$sql$catalyst$analysis$Analyzer$$executeSameContext(Analyzer.scala:124) at org.apache.spark.sql.catalyst.analysis.Analyzer.execute(Analyzer.scala:118) at org.apache.spark.sql.catalyst.analysis.Analyzer.executeAndCheck(Analyzer.scala:103) at org.apache.spark.sql.execution.QueryExecution.analyzed$lzycompute(QueryExecution.scala:57) at org.apache.spark.sql.execution.QueryExecution.analyzed(QueryExecution.scala:55) at org.apache.spark.sql.execution.QueryExecution.assertAnalyzed(QueryExecution.scala:47) at org.apache.spark.sql.Dataset$.ofRows(Dataset.scala:74) at org.apache.spark.sql.SparkSession.sql(SparkSession.scala:642) ... 49 elided

do i need to add any properties in spark-submit or shell ? or what is the alternate way to read this hiv e table using spark

hive table sample format:

  CREATE TABLE `hive``(                   |
|   `c_id` decimal(11,0),etc.........       
  ROW FORMAT SERDE                                   |
|   'org.apache.hadoop.hive.ql.io.orc.OrcSerde'      |
| WITH SERDEPROPERTIES (  
 STORED AS INPUTFORMAT                              |
|   'org.apache.hadoop.hive.ql.io.orc.OrcInputFormat'  |
| OUTPUTFORMAT                                       |
|   'org.apache.hadoop.hive.ql.io.orc.OrcOutputFormat' |
 LOCATION                                           |
|  path= 'hdfs://gjuyada/bbts/scl/raw' |
| TBLPROPERTIES (                                    |
|   'bucketing_version'='2',                         |
|   'spark.sql.create.version'='2.3.2.3.1.0.0-78',   |
|   'spark.sql.sources.provider'='orc',              |
|   'spark.sql.sources.schema.numParts'='1',         |
|   'spark.sql.sources.schema.part.0'='{"type":"struct","fields":
[{"name":"Czz_ID","type":"decimal(11,0)","nullable":true,"metadata":{}},
{"name":"DzzzC_CD","type":"string","nullable":true,"metadata":{}},
{"name":"C0000_S_N","type":"decimal(11,0)","nullable":true,"metadata":{}},
{"name":"P_ _NB","type":"decimal(11,0)","nullable":true,"metadata":{}},
{"name":"C_YYYY","type":"string","nullable":true,"metadata":{}},"type":"string","nullable":true,"metadata":{}},{"name":"Cv_ID","type":"string","nullable":true,"metadata":{}},
|   'transactional'='true',                          |
|   'transient_lastDdlTime'='1574817059')  

回答1:


The issue you are trying to reading Transactional table(transactional = true) into Spark.

Officially Spark not yet supported for Hive-ACID table, get a full dump/incremental dump of acid table to regular hive orc/parquet partitioned table then read the data using spark.

There is a Open Jira saprk-15348 to add support for reading Hive ACID table.

  • If you run major compaction on Acid table(from hive) then spark able to read base_XXX directories only but not delta directories Spark-16996 addressed in this jira.

  • There are some workaround to read acid tables using SPARK-LLAP as mentioned in this link.

  • I think starting from HDP-3.X HiveWareHouseConnector is able to support to read HiveAcid tables.

  • You can create an snapshot of the transactional table as non transactional and then read the data from the table.

    create table <non_trans> stored as orc as select * from <transactional_table>


UPDATE:

1.Create an external hive table:

 CREATE external TABLE `<ext_tab_name>`(  
       <col_name>       <data_type>....etc
           )
    stored as orc
    location '<path>';

2.Then overwrite to the above external table with existing transactional table data.

 insert overwrite table <ext_tab_name> select * from <transactional_tab_name>;


来源:https://stackoverflow.com/questions/60099846/spark-throws-error-when-reading-hive-table

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!