问题
I am looking for solutions using data.table ― I have a data.table with the following columns:
data <- data.frame(GROUP=c(3,3,4,4,5,6),
YEAR=c(1979,1985,1999,2011,2012,1994),
NAME=c("S","A","J","L","G","A"))
data <- as.data.table(data)
Data.table:
GROUP YEAR NAME
3 1979 Smith
3 1985 Anderson
4 1999 James
4 2011 Liam
5 2012 George
6 1994 Adams
For each group we want to select one row using the following rule:
- If there is a year > 2000, select the row with minimum year above 2000.
- If there not a year > 2000, select the row with the maximum year.
Desired output:
GROUP YEAR NAME
3 1985 Anderson
4 2011 Liam
5 2012 George
6 1994 Adams
Thanks! I have been struggling with this for a while.
回答1:
data.table
should be a lot simpler if you subset the special .I
row counter:
library(data.table)
setDT(data)
data[
data[
,
if(any(YEAR > 2000))
.I[which.min(2000 - YEAR)] else
.I[which.max(YEAR)],
by=GROUP
]$V1
]
# GROUP YEAR NAME
#1: 3 1985 A
#2: 4 2011 L
#3: 5 2012 G
#4: 6 1994 A
Thanks to @r2evans for the background info -
.I
is an integer vector equivalent toseq_len(nrow(x))
.
Ref: http://rdrr.io/cran/data.table/man/special-symbols.html
So, all I'm doing here is getting the matching row index for the whole of data
for each of the calculations at each by=
level. Then using these row indexes to subset data
again.
来源:https://stackoverflow.com/questions/53255897/conditionally-select-rows-within-a-group-with-data-table