I have the data in the dataframe as below:
datetime | userId | memberId | value |
2016-04-06 16:36:... | 1234 | 111 | 1
2016-04-06 17:35:... | 1234 | 222 | 5
2016-04-06 17:50:... | 1234 | 111 | 8
2016-04-06 18:36:... | 1234 | 222 | 9
2016-04-05 16:36:... | 4567 | 111 | 1
2016-04-06 17:35:... | 4567 | 222 | 5
2016-04-06 18:50:... | 4567 | 111 | 8
2016-04-06 19:36:... | 4567 | 222 | 9
I need to find the max(datetime) groupby userid,memberid. When I tried as below:
df2 = df.groupBy('userId','memberId').max('datetime')
I'm getting error as:
org.apache.spark.sql.AnalysisException: "datetime" is not a numeric
column. Aggregation function can only be applied on a numeric column.;
The output I desired is as follows:
userId | memberId | datetime
1234 | 111 | 2016-04-06 17:50:...
1234 | 222 | 2016-04-06 18:36:...
4567 | 111 | 2016-04-06 18:50:...
4567 | 222 | 2016-04-06 19:36:...
Can someone please help me how I get the max date among the given data using PySpark dataframes?
For non-numeric but Orderable
types you can use agg
with max
directly:
from pyspark.sql.functions import col, max as max_
df = sc.parallelize([
("2016-04-06 16:36", 1234, 111, 1),
("2016-04-06 17:35", 1234, 111, 5),
]).toDF(["datetime", "userId", "memberId", "value"])
(df.withColumn("datetime", col("datetime").cast("timestamp"))
.groupBy("userId", "memberId")
.agg(max_("datetime")))
## +------+--------+--------------------+
## |userId|memberId| max(datetime)|
## +------+--------+--------------------+
## | 1234| 111|2016-04-06 17:35:...|
## +------+--------+--------------------+
来源:https://stackoverflow.com/questions/38377894/how-to-get-maxdate-from-given-set-of-data-grouped-by-some-fields-using-pyspark