简历v岗位实时智能匹配算法

a 夏天 提交于 2020-12-25 04:52:54


向AI转型的程序员都关注了这个号👇👇👇

机器学习AI算法工程   公众号:datayx



人岗智能匹配


根据智联招聘抽样的经过脱敏的求职者标签数据、职位信息、及部分求职者行为信息、用人单位反馈信息,训练排序模型,对求职者的职位候选集进行排序,尽可能使得双端都满意的职位(求职者满意以及用人单位满意)优先推荐。本次比赛里,假定对于曝光给求职者的职位候选集里,假如求职者感兴趣会产生浏览职位行为,浏览职位后,如果求职者满意会产生主动投递行为。用人单位收到求职者主动投递的简历后会给出是否满意的反馈信号。


项目代码 获取方式:

关注微信公众号 datayx  然后回复  人岗匹配  即可获取。

AI项目体验地址 https://loveai.tech


评估标准

a) 测试数据由n组曝光职位数据集合组成,每组数据包含一个求职者以及一序列曝光候选职位。参赛者需要对每组职位进行预测并排序给出排序后的职位序列。对n组排序后的职位序列,比赛采用以下计算方式作为评估指标。通过计算所有n组排序后的职位序列里,求职者投递(delivered)职位的MAP值以及用人单位中意(satisfied)职位的MAP(Mean Average Precision),由最终的加权评价值



提供的训练数据包含三张表,分别是简历描述表 table1_user:



薪资表:



期望薪资是10位或者12位(遇到9位或者11位前面或者后面补0,超过上面列表部分为脏数据)

岗位描述表 table2_jd:



行为表 table3_action:



决赛:Rank4演讲PPT























阅读过本文的人还看了以下文章:


【全套视频课】最全的目标检测算法系列讲解,通俗易懂!


《美团机器学习实践》_美团算法团队.pdf


《深度学习入门:基于Python的理论与实现》高清中文PDF+源码


python就业班学习视频,从入门到实战项目


2019最新《PyTorch自然语言处理》英、中文版PDF+源码


《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码


《深度学习之pytorch》pdf+附书源码


PyTorch深度学习快速实战入门《pytorch-handbook》


【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》


《Python数据分析与挖掘实战》PDF+完整源码


汽车行业完整知识图谱项目实战视频(全23课)


李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材


笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!


《神经网络与深度学习》最新2018版中英PDF+源码


将机器学习模型部署为REST API


FashionAI服装属性标签图像识别Top1-5方案分享


重要开源!CNN-RNN-CTC 实现手写汉字识别


yolo3 检测出图像中的不规则汉字


同样是机器学习算法工程师,你的面试为什么过不了?


前海征信大数据算法:风险概率预测


【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类


VGG16迁移学习,实现医学图像识别分类工程项目


特征工程(一)


特征工程(二) :文本数据的展开、过滤和分块


特征工程(三):特征缩放,从词袋到 TF-IDF


特征工程(四): 类别特征


特征工程(五): PCA 降维


特征工程(六): 非线性特征提取和模型堆叠


特征工程(七):图像特征提取和深度学习


如何利用全新的决策树集成级联结构gcForest做特征工程并打分?


Machine Learning Yearning 中文翻译稿


蚂蚁金服2018秋招-算法工程师(共四面)通过


全球AI挑战-场景分类的比赛源码(多模型融合)


斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)


python+flask搭建CNN在线识别手写中文网站


中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程



不断更新资源

深度学习、机器学习、数据分析、python

 搜索公众号添加: datayx  

长按图片,识别二维码,点关注



机器学习算法资源社群

不断上传电子版PDF资料

技术问题求解

 QQ群号: 333972581  

长按图片,识别二维码




海淘美妆


本文分享自微信公众号 - 机器学习AI算法工程(datayx)。
如有侵权,请联系 support@oschina.cn 删除。
本文参与“OSC源创计划”,欢迎正在阅读的你也加入,一起分享。

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!