问题
I have a time-series data as below:
print(df)
ric datel timel val
0 xyz 2017-01-01 09:00:00 2
1 xyz 2017-01-01 09:04:00 5
2 xyz 2017-01-01 09:37:00 6
Now I have to fill missing timestamps upto 09:45:00
.
Expected Output:
ric datel timel val
0 xyz 2017-01-01 09:00:00 2
1 xyz 2017-01-01 09:01:00 nan
2 xyz 2017-01-01 09:02:00 nan
3 xyz 2017-01-01 09:03:00 nan
4 xyz 2017-01-01 09:04:00 5
...
...
37 xyz 2017-01-01 09:37:00 6
...
...
45 xyz 2017-01-01 09:45:00 nan
What I tried:
df1=df.resample("1 min", on ='datel').first()
which gives output as:
ric datel timel val
datel
2017-01-01 xyz 2017-01-01 09:00:00 2
And also tried with pd.date_range
but it mostly works with datetime column.
I have two different columns date and time. Is there a way to achieve this without combining date and column into datetime?
回答1:
Main idea is use reindex by time
s created by date_range:
df['timel'] = pd.to_datetime(df['timel']).dt.time
start = pd.to_datetime(str(df['timel'].min()))
end = pd.to_datetime('09:45:00')
dates = pd.date_range(start=start, end=end, freq='1Min').time
#print (dates)
df = df.set_index('timel').reindex(dates).reset_index().reindex(columns=df.columns)
cols = df.columns.difference(['val'])
df[cols] = df[cols].ffill()
print (df.head())
ric datel timel val
0 xyz 2017-01-01 09:00:00 2.0
1 xyz 2017-01-01 09:01:00 NaN
2 xyz 2017-01-01 09:02:00 NaN
3 xyz 2017-01-01 09:03:00 NaN
4 xyz 2017-01-01 09:04:00 5.0
Similar solution with resample
:
df['timel'] = pd.to_datetime(df['timel'])
#if missing row with 09:45:00 add it
if not (df['timel'] == pd.to_datetime('09:45:00')).any():
df.loc[len(df.index), 'timel'] = pd.to_datetime('09:45:00')
df=df.set_index('timel').resample("1min").first().reset_index().reindex(columns=df.columns)
cols = df.columns.difference(['val'])
df[cols] = df[cols].ffill()
df['timel'] = df['timel'].dt.time
print (df.head())
ric datel timel val
0 xyz 2017-01-01 09:00:00 2.0
1 xyz 2017-01-01 09:01:00 NaN
2 xyz 2017-01-01 09:02:00 NaN
3 xyz 2017-01-01 09:03:00 NaN
4 xyz 2017-01-01 09:04:00 5.0
回答2:
After generating the date with date_range you may use a function similar to the one below to split it.
The return values can be fed into the df
from datetime import datetime
def split_datetime(date_with_time):
"""
This function will return date and time from datetime input
"""
date_with_time = date_with_time.split(' ')
date = date_with_time[0]
time = date_with_time[1].split('.')[0]
return date, time
#Eg:
date, time = split_datetime(str(datetime.now()))
来源:https://stackoverflow.com/questions/49187686/how-to-fill-missing-timestamps-for-time-column-for-a-date-in-pandas