Golang 推荐的是通过channel进行通信的方式,而不是shareMemry的方式。
总结
这节课主要讲解 Go 语言的同步原语使用,通过它们可以更灵活地控制多协程的并发。从使用上讲,Go 语言还是更推荐 channel 这种更高级别的并发控制方式,因为它更简洁,也更容易理解和使用。
当然本节课讲的这些比较基础的同步原语也很有用。同步原语通常用于更复杂的并发控制,如果追求更灵活的控制方式和性能,你可以使用它们。
常见的并发冲突问题
//共享的资源
var sum = 0
func main() {
//开启100个协程让sum+10
for i := 0; i < 100; i++ {
go add(10)
}
//防止提前退出
time.Sleep(2 * time.Second)
fmt.Println("和为:",sum)
}
func add(i int) {
sum += i
}
同步原语
sync.Mutex
互斥锁,顾名思义,指的是在同一时刻只有一个协程执行某段代码,其他协程都要等待该协程执行完毕后才能继续执行。
在下面的示例中,我声明了一个互斥锁 mutex,然后修改 add 函数,对 sum+=i 这段代码加锁保护。这样这段访问共享资源的代码片段就并发安全了,可以得到正确的结果。
var(
sum int
mutex sync.Mutex
)
func add(i int) {
mutex.Lock()
sum += i
mutex.Unlock()
}
小提示:以上被加锁保护的 sum+=i 代码片段又称为临界区。在同步的程序设计中,临界区段指的是一个访问共享资源的程序片段,而这些共享资源又有无法同时被多个协程访问的特性。 当有协程进入临界区段时,其他协程必须等待,这样就保证了临界区的并发安全。
互斥锁的使用非常简单,它只有两个方法 Lock 和 Unlock,代表加锁和解锁。当一个协程获得 Mutex 锁后,其他协程只能等到 Mutex 锁释放后才能再次获得锁。
Mutex 的 Lock 和 Unlock 方法总是成对出现,而且要确保 Lock 获得锁后,一定执行 UnLock 释放锁,所以在函数或者方法中会采用 defer 语句释放锁,如下面的代码所示:
func add(i int) {
mutex.Lock()
defer mutex.Unlock()
sum += i
}
如果同时,我们需要去读取add的数据
func main() {
for i := 0; i < 100; i++ {
go add(10)
}
for i:=0; i<10;i++ {
go fmt.Println("和为:",readSum())
}
time.Sleep(2 * time.Second)
}
//增加了一个读取sum的函数,便于演示并发
func readSum() int {
b:=sum
return b
}
这个示例开启了 10 个协程,它们同时读取 sum 的值。因为 readSum 函数并没有任何加锁控制,所以它不是并发安全的,即一个 goroutine 正在执行 sum+=i 操作的时候,另一个 goroutine 可能正在执行 b:=sum 操作,这就会导致读取的 num 值是一个过期的值,结果不可预期。
如果要解决以上资源竞争的问题,可以使用互斥锁 sync.Mutex,如下面的代码所示:
func readSum() int {
mutex.Lock()
defer mutex.Unlock()
b:=sum
return b
}
现在我们解决了多个 goroutine 同时读写的资源竞争问题,但是又遇到另外一个问题——性能。因为每次读写共享资源都要加锁,所以性能低下,这该怎么解决呢?
现在我们分析读写这个特殊场景,有以下几种情况:
-
写的时候不能同时读,因为这个时候读取的话可能读到脏数据(不正确的数据);
-
读的时候不能同时写,因为也可能产生不可预料的结果;
-
读的时候可以同时读,因为数据不会改变,所以不管多少个 goroutine 读都是并发安全的。
所以就可以通过读写锁 sync.RWMutex 来优化这段代码,提升性能。现在我将以上示例改为读写锁,来实现我们想要的结果,如下所示:
var mutex sync.RWMutex
func readSum() int {
//只获取读锁
mutex.RLock()
defer mutex.RUnlock()
b:=sum
return b
}
对比互斥锁的示例,读写锁的改动有两处:
-
把锁的声明换成读写锁 sync.RWMutex。
-
把函数 readSum 读取数据的代码换成读锁,也就是 RLock 和 RUnlock。
这样性能就会有很大的提升,因为多个 goroutine 可以同时读数据,不再相互等待。
sync.WaitGroup
在以上示例中,相信你注意到了这段 time.Sleep(2 * time.Second) 代码,这是为了防止主函数 main 返回使用,一旦 main 函数返回了,程序也就退出了。
因为我们不知道 100 个执行 add 的协程和 10 个执行 readSum 的协程什么时候完全执行完毕,所以设置了一个比较长的等待时间,也就是两秒。
小提示:一个函数或者方法的返回 (return) 也就意味着当前函数执行完毕。
所以存在一个问题,如果这 110 个协程在两秒内执行完毕,main 函数本该提前返回,但是偏偏要等两秒才能返回,会产生性能问题。
如果这 110 个协程执行的时间超过两秒,因为设置的等待时间只有两秒,程序就会提前返回,导致有协程没有执行完毕,产生不可预知的结果。
那么有没有办法解决这个问题呢?也就是说有没有办法监听所有协程的执行,一旦全部执行完毕,程序马上退出,这样既可保证所有协程执行完毕,又可以及时退出节省时间,提升性能。你第一时间应该会想到上节课讲到的 channel。没错,channel 的确可以解决这个问题,不过非常复杂,Go 语言为我们提供了更简洁的解决办法,它就是 sync.WaitGroup。
在使用 sync.WaitGroup 改造示例之前,我先把 main 函数中的代码进行重构,抽取成一个函数 run,这样可以更好地理解,如下所示:
func main() {
run()
}
func run(){
for i := 0; i < 100; i++ {
go add(10)
}
for i:=0; i<10;i++ {
go fmt.Println("和为:",readSum())
}
time.Sleep(2 * time.Second)
}
func main() {
run()
}
func run(){
for i := 0; i < 100; i++ {
go add(10)
}
for i:=0; i<10;i++ {
go fmt.Println("和为:",readSum())
}
time.Sleep(2 * time.Second)
}
sync.WaitGroup 的使用比较简单,一共分为三步:
-
声明一个 sync.WaitGroup,然后通过 Add 方法设置计数器的值,需要跟踪多少个协程就设置多少,这里是 110;
-
在每个协程执行完毕时调用 Done 方法,让计数器减 1,告诉 sync.WaitGroup 该协程已经执行完毕;
-
最后调用 Wait 方法一直等待,直到计数器值为 0,也就是所有跟踪的协程都执行完毕。
通过 sync.WaitGroup 可以很好地跟踪协程。在协程执行完毕后,整个 run 函数才能执行完毕,时间不多不少,正好是协程执行的时间。
sync.WaitGroup 适合协调多个协程共同做一件事情的场景,比如下载一个文件,假设使用 10 个协程,每个协程下载文件的 1/10 大小,只有 10 个协程都下载好了整个文件才算是下载好了。这就是我们经常听到的多线程下载,通过多个线程共同做一件事情,显著提高效率。
小提示:其实你也可以把 Go 语言中的协程理解为平常说的线程,从用户体验上也并无不可,但是从技术实现上,你知道他们是不一样的就可以了。
来源:oschina
链接:https://my.oschina.net/u/4381258/blog/4782996