SVD for sparse matrix in R

社会主义新天地 提交于 2019-11-27 22:22:29

The irlba package has a very fast SVD implementation for sparse matrices.

You can do a very impressive bit of sparse SVD in R using random projection as described in http://arxiv.org/abs/0909.4061

Here is some sample code:

# computes first k singular values of A with corresponding singular vectors
incore_stoch_svd = function(A, k) {
  p = 10              # may need a larger value here
  n = dim(A)[1]
  m = dim(A)[2]

  # random projection of A    
  Y = (A %*% matrix(rnorm((k+p) * m), ncol=k+p))
  # the left part of the decomposition works for A (approximately)
  Q = qr.Q(qr(Y))
  # taking that off gives us something small to decompose
  B = t(Q) %*% A

  # decomposing B gives us singular values and right vectors for A  
  s = svd(B)
  U = Q %*% s$u
  # and then we can put it all together for a complete result
  return (list(u=U, v=s$v, d=s$d))
}

So here's what I ended up doing. It's relatively straightforward to write a routine that dumps a sparse matrix (class dgCMatrix) to a text file in SVDLIBC's "sparse text" format, then call the svd executable, and read the three resultant text files back into R.

The catch is that it's pretty inefficient - it takes me about 10 seconds to read & write the files, but the actual SVD calculation takes only about 0.2 seconds or so. Still, this is of course way better than not being able to perform the calculation at all, so I'm happy. =)

rARPACK is the package you need. Works like a charm and is Superfast because it parallelizes via C and C++.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!