How to dynamically iterate over the output of an upstream task to create parallel tasks in airflow?

浪子不回头ぞ 提交于 2019-11-27 21:41:28

Per @Juan Riza's suggestion I checked out this link: Proper way to create dynamic workflows in Airflow. This was pretty much the answer, although I was able to simplify the solution enough that I thought I would offer my own modified version of the implementation here:

from datetime import datetime
import os
import sys

from airflow.models import DAG
from airflow.operators.python_operator import PythonOperator

import ds_dependencies

SCRIPT_PATH = os.getenv('DASH_PREPROC_PATH')
if SCRIPT_PATH:
    sys.path.insert(0, SCRIPT_PATH)
    import dash_workers
else:
    print('Define DASH_PREPROC_PATH value in environmental variables')
    sys.exit(1)

ENV = os.environ

default_args = {
  # 'start_date': datetime.now(),
  'start_date': datetime(2017, 7, 18)
}

DAG = DAG(
  dag_id='dash_preproc',
  default_args=default_args
)

clear_tables = PythonOperator(
  task_id='clear_tables',
  python_callable=dash_workers.clear_db,
  dag=DAG)

def id_worker(uid):
    return PythonOperator(
        task_id=uid,
        python_callable=dash_workers.main_preprocess,
        op_args=[uid],
        dag=DAG)

for uid in capone_dash_workers.get_id_creds():
    clear_tables >> id_worker(uid)

clear_tables cleans the database that will be re-built as a result of the process. id_worker is a function that dynamically generates new preprocessing tasks, based on the array of ID values returned from get_if_creds. The task ID is just the corresponding user ID, though it could easily have been an index, i, as in the example mentioned above.

NOTE That bitshift operator (<<) looks backwards to me, as the clear_tables task should come first, but it's what seems to be working in this case.

Considering that Apache Airflow is a workflow management tool, ie. it determines the dependencies between task that the user defines in comparison (as an example) with apache Nifi which is a dataflow management tool, ie. the dependencies here are data which are transferd through the tasks.

That said, i think that your approach is quit right (my comment is based on the code posted) but Airflow offers a concept called XCom. It allows tasks to "cross-communicate" between them by passing some data. How big should the passed data be ? it is up to you to test! But generally it should be not so big. I think it is in the form of key,value pairs and it get stored in the airflow meta-database,ie you can't pass files for example but a list with ids could work.

Like i said you should test it your self. I would be very happy to know your experience. Here is an example dag which demonstrates the use of XCom and here is the necessary documentation. Cheers!

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!