How to aggregate over rolling time window with groups in Spark

烂漫一生 提交于 2019-11-27 21:38:33

Revised answer:

You can use a simple window functions trick here. A bunch of imports:

from pyspark.sql.functions import coalesce, col, datediff, lag, lit, sum as sum_
from pyspark.sql.window import Window

window definition:

w = Window.partitionBy("group_by").orderBy("date")

Cast date to DateType:

df_ = df.withColumn("date", col("date").cast("date"))

Define following expressions:

# Difference from the previous record or 0 if this is the first one
diff = coalesce(datediff("date", lag("date", 1).over(w)), lit(0))

# 0 if diff <= 30, 1 otherwise
indicator = (diff > 30).cast("integer")

# Cumulative sum of indicators over the window
subgroup = sum_(indicator).over(w).alias("subgroup")

Add subgroup expression to the table:

df_.select("*", subgroup).groupBy("group_by", "subgroup").avg("get_avg")
+--------+--------+------------+
|group_by|subgroup|avg(get_avg)|
+--------+--------+------------+
|  group1|       0|         5.0|
|  group2|       0|        20.0|
|  group2|       1|         8.0|
+--------+--------+------------+

first is not meaningful with aggregations, but if column is monotonically increasing you can use min. Otherwise you'll have to use window functions as well.

Tested using Spark 2.1. May require subqueries and Window instance when used with earlier Spark release.

The original answer (not relevant in the specified scope)

Since Spark 2.0 you should be able to use a window function:

Bucketize rows into one or more time windows given a timestamp specifying column. Window starts are inclusive but the window ends are exclusive, e.g. 12:05 will be in the window [12:05,12:10) but not in [12:00,12:05).

from pyspark.sql.functions import window

df.groupBy(window("date", windowDuration="30 days")).count()

but you can see from the result,

+---------------------------------------------+-----+
|window                                       |count|
+---------------------------------------------+-----+
|[2016-01-30 01:00:00.0,2016-02-29 01:00:00.0]|1    |
|[2015-12-31 01:00:00.0,2016-01-30 01:00:00.0]|2    |
|[2016-03-30 02:00:00.0,2016-04-29 02:00:00.0]|1    |
+---------------------------------------------+-----+

you'll have to be a bit careful when it comes to timezones.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!