Understanding stateful LSTM

守給你的承諾、 提交于 2019-11-27 20:41:08
  1. Having a stateful LSTM in Keras means that a Keras variable will be used to store and update the state, and in fact you could check the value of the state vector(s) at any time (that is, until you call reset_states()). A non-stateful model, on the other hand, will use an initial zero state every time it processes a batch, so it is as if you always called reset_states() after train_on_batch, test_on_batch and predict_on_batch. The explanation about the state being reused for the next batch on stateful models is just about that difference with non-stateful; of course the state will always flow within the batch and you do not need to have batches of size 1 for that to happen. I see two scenarios where stateful models are useful:

    • You want to train on split sequences of data because these are very long and it would not be practical to train on their whole length.
    • On prediction time, you want to retrieve the output for each time point in the sequence, not just at the end (either because you want to feed it back into the network or because your application needs it). I personally do that in the models that I export for later integration (which are "copies" of the training model with batch size of 1).
  2. I agree that the example of an RNN for the alphabet does not really seem very useful in practice; it will only work when you start with the letter A. If you want to learn to reproduce the alphabet starting at any letter, you would need to train the network with that kind of examples (subsequences or rotations of the alphabet). But I think a regular feed-forward network could learn to predict the next letter of the alphabet training on pairs like (A, B), (B, C), etc. I think the example is meant for demonstrative purposes more than anything else.

  3. You may have probably already read it, but the popular post The Unreasonable Effectiveness of Recurrent Neural Networks shows some interesting results along the lines of what you want to do (although it does not really dive into implementation specifics). I don't have personal experience training RNN with textual data, but there is a number of approaches you can research. You can build character-based models (like the ones in the post), where your input and receive one character at a time. A more advanced approach is to do some preprocessing on the texts and transform them into sequences of numbers; Keras includes some text preprocessing functions to do that. Having one single number as feature space is probably not going to work all that well, so you could simply turn each word into a vector with one-hot encoding or, more interestingly, have the network learn the best vector representation for each for, which is what they call en embedding. You can go even further with the preprocessing and look into something like NLTK, specially if you want to remove stop words, punctuation and things like that. Finally, if you have sequences of different sizes (e.g. you are using full texts instead of excerpts of a fixed size, which may or may not be important for you) you will need to be a bit more careful and use masking and/or sample weighting. Depending on the exact problem, you can set up the training accordingly. If you want to learn to generate similar text, the "Y" would be the similar to the "X" (one-hot encoded), only shifted by one (or more) positions (in this case you may need to use return_sequences=True and TimeDistributed layers). If you want to determine the autor, your output could be a softmax Dense layer.

Hope that helps.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!