how to programmatically determine available GPU memory with tensorflow?

天大地大妈咪最大 提交于 2020-08-24 08:09:09

问题


For a vector quantization (k-means) program I like to know the amount of available memory on the present GPU (if there is one). This is needed to choose an optimal batch size in order to have as few batches as possible to run over the complete data set.

I have written the following test program:

import tensorflow as tf
import numpy as np
from kmeanstf import KMeansTF
print("GPU Available: ", tf.test.is_gpu_available())

nn=1000
dd=250000
print("{:,d} bytes".format(nn*dd*4))
dic = {}
for x in "ABCD":
    dic[x]=tf.random.normal((nn,dd))
    print(x,dic[x][:1,:2])

print("done...")

This is a typical output on my system with (ubuntu 18.04 LTS, GTX-1060 6GB). Please note the core dump.

python misc/maxmem.py 
GPU Available:  True
1,000,000,000 bytes
A tf.Tensor([[-0.23787294 -2.0841186 ]], shape=(1, 2), dtype=float32)
B tf.Tensor([[ 0.23762687 -1.1229591 ]], shape=(1, 2), dtype=float32)
C tf.Tensor([[-1.2672468   0.92139906]], shape=(1, 2), dtype=float32)
2020-01-02 17:35:05.988473: W tensorflow/core/common_runtime/bfc_allocator.cc:419] Allocator (GPU_0_bfc) ran out of memory trying to allocate 953.67MiB (rounded to 1000000000).  Current allocation summary follows.
2020-01-02 17:35:05.988752: W tensorflow/core/common_runtime/bfc_allocator.cc:424] **************************************************************************************************xx
2020-01-02 17:35:05.988835: W tensorflow/core/framework/op_kernel.cc:1622] OP_REQUIRES failed at cwise_ops_common.cc:82 : Resource exhausted: OOM when allocating tensor with shape[1000,250000] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
Segmentation fault (core dumped)

Occasionally I do get an error from python instead of a core dump (see below). This would actually be better since I could catch it and thus determine by trial and error the maximum available memory. But it alternates with core dumps:

python misc/maxmem.py 
GPU Available:  True
1,000,000,000 bytes
A tf.Tensor([[-0.73510283 -0.94611156]], shape=(1, 2), dtype=float32)
B tf.Tensor([[-0.8458411  0.552555 ]], shape=(1, 2), dtype=float32)
C tf.Tensor([[0.30532074 0.266423  ]], shape=(1, 2), dtype=float32)
2020-01-02 17:35:26.401156: W tensorflow/core/common_runtime/bfc_allocator.cc:419] Allocator (GPU_0_bfc) ran out of memory trying to allocate 953.67MiB (rounded to 1000000000).  Current allocation summary follows.
2020-01-02 17:35:26.401486: W tensorflow/core/common_runtime/bfc_allocator.cc:424] **************************************************************************************************xx
2020-01-02 17:35:26.401571: W tensorflow/core/framework/op_kernel.cc:1622] OP_REQUIRES failed at cwise_ops_common.cc:82 : Resource exhausted: OOM when allocating tensor with shape[1000,250000] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc
Traceback (most recent call last):
  File "misc/maxmem.py", line 11, in <module>
    dic[x]=tf.random.normal((nn,dd))
  File "/home/fritzke/miniconda2/envs/tf20b/lib/python3.7/site-packages/tensorflow_core/python/ops/random_ops.py", line 76, in random_normal
    value = math_ops.add(mul, mean_tensor, name=name)
  File "/home/fritzke/miniconda2/envs/tf20b/lib/python3.7/site-packages/tensorflow_core/python/ops/gen_math_ops.py", line 391, in add
    _six.raise_from(_core._status_to_exception(e.code, message), None)
  File "<string>", line 3, in raise_from
tensorflow.python.framework.errors_impl.ResourceExhaustedError: OOM when allocating tensor with shape[1000,250000] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator GPU_0_bfc [Op:Add] name: random_normal/

How could I reliably get this information for whatever system the software is running on?


回答1:


This code will return free GPU memory in MegaBytes for each GPU:

import subprocess as sp
import os

def get_gpu_memory():
  _output_to_list = lambda x: x.decode('ascii').split('\n')[:-1]

  ACCEPTABLE_AVAILABLE_MEMORY = 1024
  COMMAND = "nvidia-smi --query-gpu=memory.free --format=csv"
  memory_free_info = _output_to_list(sp.check_output(COMMAND.split()))[1:]
  memory_free_values = [int(x.split()[0]) for i, x in enumerate(memory_free_info)]
  print(memory_free_values)
  return memory_free_values

get_gpu_memory()

This answer relies on nvidia-smi being installed (which is pretty much always the case for Nvidia GPUs) and therefore is limited to NVidia GPUs.




回答2:


I actually found an answer in this old question of mine . To bring some additional benefit to readers I tested the mentioned program

import nvidia_smi

nvidia_smi.nvmlInit()

handle = nvidia_smi.nvmlDeviceGetHandleByIndex(0)
# card id 0 hardcoded here, there is also a call to get all available card ids, so we could iterate

info = nvidia_smi.nvmlDeviceGetMemoryInfo(handle)

print("Total memory:", info.total)
print("Free memory:", info.free)
print("Used memory:", info.used)

nvidia_smi.nvmlShutdown()

on colab with the following result:

Total memory: 17071734784
Free memory: 17071734784
Used memory: 0

The actual GPU I had there was a Tesla P100 as can be seen from executing

!nvidia-smi

and observing the output

+-----------------------------------------------------------------------------+
| NVIDIA-SMI 440.44       Driver Version: 418.67       CUDA Version: 10.1     |
|-------------------------------+----------------------+----------------------+
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |
|===============================+======================+======================|
|   0  Tesla P100-PCIE...  Off  | 00000000:00:04.0 Off |                    0 |
| N/A   32C    P0    26W / 250W |      0MiB / 16280MiB |      0%      Default |
+-------------------------------+----------------------+----------------------+

+-----------------------------------------------------------------------------+
| Processes:                                                       GPU Memory |
|  GPU       PID   Type   Process name                             Usage      |
|=============================================================================|
|  No running processes found                                                 |
+-----------------------------------------------------------------------------+


来源:https://stackoverflow.com/questions/59567226/how-to-programmatically-determine-available-gpu-memory-with-tensorflow

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!