问题
Assuming I have struct
and std::tuple
with same type layout:
struct MyStruct { int i; bool b; double d; }
using MyTuple = std::tuple<int,bool,double>;
Is there any standartized way to cast one to another?
P.S. I know that trivial memory copying can do the trick, but it is alignment and implementation dependent
回答1:
Unfortunately there is no automatic way to do that, BUT an alternative is adapt the struct to Boost.Fusion sequence. You do this once and for all for each new class.
#include <boost/fusion/adapted/struct/adapt_struct.hpp>
...
struct MyStruct { int i; bool b; double d; }
BOOST_FUSION_ADAPT_STRUCT(
MyStruct,
(int, i)
(bool, b)
(double, d)
)
The use MyStruct
as if it where a Fusion.Sequence (it fits generically almost everywhere you already use std::tuple<...>
, if you make those functions generic.) As a bonus you will not need to copy your data members at all.
If you really need to convert to std::tuple
, after "Fusion-adapting" you can do this:
#include <boost/fusion/adapted/std_tuple.hpp>
#include <boost/fusion/algorithm/iteration/for_each.hpp>
#include <boost/fusion/algorithm/transformation/zip.hpp>
...
auto to_tuple(MyStruct const& ms){
std::tuple<int, bool, double> ret;
auto z = zip(ret, ms);
boost::fusion::for_each(z, [](auto& ze){get<0>(ze) = get<1>(ze);});
// or use boost::fusion::copy
return ret;
}
The truth is that std::tuple
is a half-backed feature. It is like having STD containers and no algorithms. Fortunatelly we have #include <boost/fusion/adapted/std_tuple.hpp>
that allows us to do amazing things.
Full code:
By including the std_tuple.hpp
header from Boost.Fusion std::tuple
is automatically adapted to a Boost.Fusion sequence, thus the following is possible by using Boost.Fusion as a bridge between your struct and std::tuple
:
#include <iostream>
#include <string>
#include <tuple>
#include <boost/fusion/adapted/struct/adapt_struct.hpp>
#include <boost/fusion/algorithm/auxiliary/copy.hpp>
#include <boost/fusion/adapted/std_tuple.hpp>
struct foo
{
std::string a, b, c;
int d, e, f;
};
BOOST_FUSION_ADAPT_STRUCT(
foo,
(std::string, a)
(std::string, b)
(std::string, c)
(int, d)
(int, e)
(int, f)
)
template<std::size_t...Is, class Tup>
foo to_foo_aux(std::index_sequence<Is...>, Tup&& tup) {
using std::get;
return {get<Is>(std::forward<Tup>(tup))...};
}
template<class Tup>
foo to_foo(Tup&& tup) {
using T=std::remove_reference_t<Tup>;
return to_foo_aux(
std::make_index_sequence<std::tuple_size<T>{}>{},
std::forward<Tup>(tup)
);
}
template<std::size_t...Is>
auto to_tuple_aux( std::index_sequence<Is...>, foo const& f ) {
using boost::fusion::at_c;
return std::make_tuple(at_c<Is>(f)...);
}
auto to_tuple(foo const& f){
using T=std::remove_reference_t<foo>;
return to_tuple_aux(
std::make_index_sequence<boost::fusion::result_of::size<foo>::type::value>{},
f
);
}
int main(){
foo f{ "Hello", "World", "!", 1, 2, 3 };
std::tuple<std::string, std::string, std::string, int, int, int> dest = to_tuple(f);
// boost::fusion::copy(f, dest); // also valid but less general than constructor
std::cout << std::get<0>(dest) << ' ' << std::get<1>(dest) << std::get<2>(dest) << std::endl;
std::cout << at_c<0>(dest) << ' ' << at_c<1>(dest) << at_c<2>(dest) << std::endl; // same as above
foo f2 = to_foo(dest);
std::cout << at_c<0>(f2) << ' ' << at_c<1>(f2) << at_c<2>(f2) << std::endl;
}
I will not recommend reinterpret_cast<std::tuple<...>&>(mystructinstance.i)
because that will result in negative votes and it is not portable.
回答2:
We can use structured bindings to convert a struct into a tuple with a bit of work.
Struct-to-tuple is very awkward.
template<std::size_t N>
struct to_tuple_t;
template<>
struct to_tuple_t<3> {
template<class S>
auto operator()(S&& s)const {
auto[e0,e1,e2]=std::forward<S>(s);
return std::make_tuple(e0, e1, e2);
}
};
Now, write a to_tuple_t
for each size you want to support. This gets tedious. Sadly I know of no way to introduce a parameter pack there.
template<std::size_t N, class S>
auto to_tuple(S&& s) {
return to_tuple_t<N>{}(std::forward<S>(s));
}
I know of no way to calculate the value of N
required either. So you'd have to type the 3
in auto t = to_tuple<3>(my_struct);
when you call it.
I am not a master of structured bindings. There is probably a &&
or &
or a decltype that would permit perfect forwarding on these lines:
auto[e0,e1,e2]=std::forward<S>(s);
return std::make_tuple(e0, e1, e2);
but without a compiler to play with, I'll be conservative and make redundant copies.
Converting a tuple into a struct is easy:
template<class S, std::size_t...Is, class Tup>
S to_struct( std::index_sequence<Is...>, Tup&& tup ) {
using std::get;
return {get<Is>(std::forward<Tup>(tup))...};
}
template<class S, class Tup>
S to_struct( Tup&&tup ) {
using T=std::remove_reference_t<Tup>;
return to_struct(
std::make_index_sequence<std::tuple_size<T>{}>{},
std::forward<Tup>(tup)
);
}
SFINAE support based off tuple_size
might be good for to_struct
.
The above code works with all tuple-likes, like std::pair
, std::array
, and anything you custom-code to support structured bindings (tuple_size
and get<I>
).
Amusingly,
std::array<int, 3> arr{1,2,3};
auto t = to_tuple<3>(arr);
works and returns a tuple with 3 elements, as to_tuple
is based on structured bindings, which work with tuple-likes as input.
to_array
is another possibility in this family.
回答3:
Is there any standartized way to cast one to another?
There is no way to "cast" the one to the other.
The easiest may be to use a std::tie to pack the tuple out into the struct
;
struct MyStruct { int i; bool b; double d; };
using MyTuple = std::tuple<int,bool,double>;
auto t = std::make_tuple(42, true, 5.1);
MyStruct s;
std::tie(s.i, s.b, s.d) = t;
Demo.
You can further wrap this up in higher level macros or "generator" (make
style) functions, e.g;
std::tuple<int, bool, double> from_struct(MyStruct const& src)
{
return std::make_tuple(src.i, src.b, src.d);
}
MyStruct to_struct(std::tuple<int, bool, double> const& src)
{
MyStruct s;
std::tie(s.i, s.b, s.d) = src;
return s;
}
I know that trivial memory copying can do the trick, but it is alignment and implementation dependent?
You mention the "trivial memory copy" would work - only for copying the individual members. So basically, a memcpy
of the entire structure to the tuple
and vice-versa is not going to always behave as you expect (if ever); the memory layout of a tuple
is not standardised. If it does work, it is highly dependent on the implementation.
回答4:
Tuple to struct
conversion is trivial, but backward I think is impossible at current C++ level in general.
#include <type_traits>
#include <utility>
#include <tuple>
namespace details
{
template< typename result_type, typename ...types, std::size_t ...indices >
result_type
make_struct(std::tuple< types... > t, std::index_sequence< indices... >) // &, &&, const && etc.
{
return {std::get< indices >(t)...};
}
}
template< typename result_type, typename ...types >
result_type
make_struct(std::tuple< types... > t) // &, &&, const && etc.
{
return details::make_struct< result_type, types... >(t, std::index_sequence_for< types... >{}); // if there is repeated types, then the change for using std::index_sequence_for is trivial
}
#include <cassert>
#include <cstdlib>
int main()
{
using S = struct { int a; char b; double c; };
auto s = make_struct< S >(std::make_tuple(1, '2', 3.0));
assert(s.a == 1);
assert(s.b == '2');
assert(s.c == 3.0);
return EXIT_SUCCESS;
}
Live example.
来源:https://stackoverflow.com/questions/38561242/struct-to-from-stdtuple-conversion