R library for discrete Markov chain simulation

孤者浪人 提交于 2019-11-27 20:18:05

A while back I wrote a set of functions for simulation and estimation of Discrete Markov Chain probability matrices: http://www.feferraz.net/files/lista/DTMC.R.

Relevant code for what you're asking:

simula <- function(trans,N) {
        transita <- function(char,trans) {
                sample(colnames(trans),1,prob=trans[char,])
        }

 sim <- character(N)
 sim[1] <- sample(colnames(trans),1)
 for (i in 2:N) {
  sim[i] <- transita(sim[i-1],trans)
 }

 sim
}

#example
#Obs: works for N >= 2 only. For higher order matrices just define an
#appropriate mattrans
mattrans <- matrix(c(0.97,0.03,0.01,0.99),ncol=2,byrow=TRUE)
colnames(mattrans) <- c('0','1')
row.names(mattrans) <- c('0','1')
instancia <- simula(mattrans,255) # simulates 255 steps in the process

Argh, you found the solution whilst I was writing it up for you. Here's a simple example that I came up with:

run = function()
{
    # The probability transition matrix
    trans = matrix(c(1/3,1/3,1/3,
                0,2/3,1/3,
                2/3,0,1/3), ncol=3, byrow=TRUE);

    # The state that we're starting in
    state = ceiling(3 * runif(1, 0, 1));
    cat("Starting state:", state, "\n");

    # Make twenty steps through the markov chain
    for (i in 1:20)
    {
        p = 0;
        u = runif(1, 0, 1);

        cat("> Dist:", paste(round(c(trans[state,]), 2)), "\n");
        cat("> Prob:", u, "\n");

        newState = state;
        for (j in 1:ncol(trans))
        {
            p = p + trans[state, j];
            if (p >= u)
            {
                newState = j;
                break;
            }
        }

        cat("*", state, "->", newState, "\n");
        state = newState;
    }
}

run();

Note that your probability transition matrix doesn't sum to 1 in each row, which it should do. My example has a slightly altered probability transition matrix which adheres to this rule.

You can now use the markovchain package available in CRAN. The user manual. is pretty good and has several examples.

标签
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!