TimeDistributed(Dense) vs Dense in Keras - Same number of parameters

喜欢而已 提交于 2019-11-27 20:09:47

TimeDistributedDense applies a same dense to every time step during GRU/LSTM Cell unrolling. So the error function will be between predicted label sequence and the actual label sequence. (Which is normally the requirement for sequence to sequence labeling problems).

However, with return_sequences=False, Dense layer is applied only once at the last cell. This is normally the case when RNNs are used for classification problem. If return_sequences=True then Dense layer is applied to every timestep just like TimeDistributedDense.

So for as per your models both are same, but if u change your second model to "return_sequences=False" then the Dense will be applied only at the last cell. Try changing it and the model will throw as error because then the Y will be of size [Batch_size, InputSize], it is no more a sequence to sequence but a full sequence to label problem.

from keras.models import Sequential
from keras.layers import Dense, Activation, TimeDistributed
from keras.layers.recurrent import GRU
import numpy as np

InputSize = 15
MaxLen = 64
HiddenSize = 16

OutputSize = 8
n_samples = 1000

model1 = Sequential()
model1.add(GRU(HiddenSize, return_sequences=True, input_shape=(MaxLen, InputSize)))
model1.add(TimeDistributed(Dense(OutputSize)))
model1.add(Activation('softmax'))
model1.compile(loss='categorical_crossentropy', optimizer='rmsprop')


model2 = Sequential()
model2.add(GRU(HiddenSize, return_sequences=True, input_shape=(MaxLen, InputSize)))
model2.add(Dense(OutputSize))
model2.add(Activation('softmax'))
model2.compile(loss='categorical_crossentropy', optimizer='rmsprop')

model3 = Sequential()
model3.add(GRU(HiddenSize, return_sequences=False, input_shape=(MaxLen, InputSize)))
model3.add(Dense(OutputSize))
model3.add(Activation('softmax'))
model3.compile(loss='categorical_crossentropy', optimizer='rmsprop')

X = np.random.random([n_samples,MaxLen,InputSize])
Y1 = np.random.random([n_samples,MaxLen,OutputSize])
Y2 = np.random.random([n_samples, OutputSize])

model1.fit(X, Y1, batch_size=128, nb_epoch=1)
model2.fit(X, Y1, batch_size=128, nb_epoch=1)
model3.fit(X, Y2, batch_size=128, nb_epoch=1)

print(model1.summary())
print(model2.summary())
print(model3.summary())

In the above example architecture of model1 and model2 are sample (sequence to sequence models) and model3 is a full sequence to label model.

Here is a piece of code that verifies TimeDistirbuted(Dense(X)) is identical to Dense(X):

import numpy as np 
from keras.layers import Dense, TimeDistributed
import tensorflow as tf

X = np.array([ [[1, 2, 3],
                [4, 5, 6],
                [7, 8, 9],
                [10, 11, 12]
               ],
               [[3, 1, 7],
                [8, 2, 5],
                [11, 10, 4],
                [9, 6, 12]
               ]
              ]).astype(np.float32)
print(X.shape)

(2, 4, 3)

dense_weights = np.array([[0.1, 0.2, 0.3, 0.4, 0.5],
                          [0.2, 0.7, 0.9, 0.1, 0.2],
                          [0.1, 0.8, 0.6, 0.2, 0.4]])
bias = np.array([0.1, 0.3, 0.7, 0.8, 0.4])
print(dense_weights.shape)

(3, 5)

dense = Dense(input_dim=3, units=5, weights=[dense_weights, bias])
input_tensor = tf.Variable(X, name='inputX')
output_tensor1 = dense(input_tensor)
output_tensor2 = TimeDistributed(dense)(input_tensor)
print(output_tensor1.shape)
print(output_tensor2.shape)

(2, 4, 5)

(2, ?, 5)

with tf.Session() as sess:
    sess.run(tf.global_variables_initializer())
    output1 = sess.run(output_tensor1)
    output2 = sess.run(output_tensor2)

print(output1 - output2)

And the difference is:

[[[0. 0. 0. 0. 0.]
  [0. 0. 0. 0. 0.]
  [0. 0. 0. 0. 0.]
  [0. 0. 0. 0. 0.]]

 [[0. 0. 0. 0. 0.]
  [0. 0. 0. 0. 0.]
  [0. 0. 0. 0. 0.]
  [0. 0. 0. 0. 0.]]]
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!