How to perform bilinear interpolation in Python

人盡茶涼 提交于 2019-11-27 20:07:33

Here's a reusable function you can use. It includes doctests and data validation:

def bilinear_interpolation(x, y, points):
    '''Interpolate (x,y) from values associated with four points.

    The four points are a list of four triplets:  (x, y, value).
    The four points can be in any order.  They should form a rectangle.

        >>> bilinear_interpolation(12, 5.5,
        ...                        [(10, 4, 100),
        ...                         (20, 4, 200),
        ...                         (10, 6, 150),
        ...                         (20, 6, 300)])
        165.0

    '''
    # See formula at:  http://en.wikipedia.org/wiki/Bilinear_interpolation

    points = sorted(points)               # order points by x, then by y
    (x1, y1, q11), (_x1, y2, q12), (x2, _y1, q21), (_x2, _y2, q22) = points

    if x1 != _x1 or x2 != _x2 or y1 != _y1 or y2 != _y2:
        raise ValueError('points do not form a rectangle')
    if not x1 <= x <= x2 or not y1 <= y <= y2:
        raise ValueError('(x, y) not within the rectangle')

    return (q11 * (x2 - x) * (y2 - y) +
            q21 * (x - x1) * (y2 - y) +
            q12 * (x2 - x) * (y - y1) +
            q22 * (x - x1) * (y - y1)
           ) / ((x2 - x1) * (y2 - y1) + 0.0)

You can run test code by adding:

if __name__ == '__main__':
    import doctest
    doctest.testmod()

Running the interpolation on your dataset produces:

>>> n = [(54.5, 17.041667, 31.993),
         (54.5, 17.083333, 31.911),
         (54.458333, 17.041667, 31.945),
         (54.458333, 17.083333, 31.866),
    ]
>>> bilinear_interpolation(54.4786674627, 17.0470721369, n)
31.95798688313631

Not sure if this helps much, but I get a different value when doing linear interpolation using scipy:

>>> import numpy as np
>>> from scipy.interpolate import griddata
>>> n = np.array([(54.5, 17.041667, 31.993),
                  (54.5, 17.083333, 31.911),
                  (54.458333, 17.041667, 31.945),
                  (54.458333, 17.083333, 31.866)])
>>> griddata(n[:,0:2], n[:,2], [(54.4786674627, 17.0470721369)], method='linear')
array([ 31.95817681])
pmav99

Inspired from here, I came up with the following snippet. The API is optimized for reusing a lot of times the same table:

from bisect import bisect_left

class BilinearInterpolation(object):
    """ Bilinear interpolation. """
    def __init__(self, x_index, y_index, values):
        self.x_index = x_index
        self.y_index = y_index
        self.values = values

    def __call__(self, x, y):
        # local lookups
        x_index, y_index, values = self.x_index, self.y_index, self.values

        i = bisect_left(x_index, x) - 1
        j = bisect_left(y_index, y) - 1

        x1, x2 = x_index[i:i + 2]
        y1, y2 = y_index[j:j + 2]
        z11, z12 = values[j][i:i + 2]
        z21, z22 = values[j + 1][i:i + 2]

        return (z11 * (x2 - x) * (y2 - y) +
                z21 * (x - x1) * (y2 - y) +
                z12 * (x2 - x) * (y - y1) +
                z22 * (x - x1) * (y - y1)) / ((x2 - x1) * (y2 - y1))

You can use it like this:

table = BilinearInterpolation(
    x_index=(54.458333, 54.5), 
    y_index=(17.041667, 17.083333), 
    values=((31.945, 31.866), (31.993, 31.911))
)

print(table(54.4786674627, 17.0470721369))
# 31.957986883136307

This version has no error checking and you will run into trouble if you try to use it at the boundaries of the indexes (or beyond). For the full version of the code, including error checking and optional extrapolation, look here.

You can also refer to the interp function in matplotlib.

I think the point of doing a floor function is that usually you're looking to interpolate a value whose coordinate lies between two discrete coordinates. However you seem to have the actual real coordinate values of the closest points already, which makes it simple math.

z00 = n[0][2]
z01 = n[1][2]
z10 = n[2][2]
z11 = n[3][2]

# Let's assume L is your x-coordinate and B is the Y-coordinate

dx = n[2][0] - n[0][0] # The x-gap between your sample points
dy = n[1][1] - n[0][1] # The Y-gap between your sample points

dx1 = (L - n[0][0]) / dx # How close is your point to the left?
dx2 = 1 - dx1              # How close is your point to the right?
dy1 = (B - n[0][1]) / dy # How close is your point to the bottom?
dy2 = 1 - dy1              # How close is your point to the top?

left = (z00 * dy1) + (z01 * dy2)   # First interpolate along the y-axis
right = (z10 * dy1) + (z11 * dy2)

z = (left * dx1) + (right * dx2)   # Then along the x-axis

There might be a bit of erroneous logic in translating from your example, but the gist of it is you can weight each point based on how much closer it is to the interpolation goal point than its other neighbors.

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!