参考文章:在idea里面怎么远程提交spark任务到yarn集群
spark任务运行的几种模式:
1,本地模式,在idea里面写完代码直接运行.
2,standalone模式,需要把程序打jar包,上传到集群,spark-submit提交到集群运行
3,yarn模式(local,client,cluster)跟上面的一样,也需要打jar包,提交到集群运行
如果是自己测试的话,用上面几种方法都比较麻烦,每次改完代码都需要打包上传到集群,然后spark-submit提交到集群运行,也非常浪费时间,下面就介绍怎么在本地idea远程提交到yarn集群
直接看下面的demo(代码写的比较简单)
package spark
import org.apache.kafka.common.serialization.StringDeserializer
import org.apache.spark.streaming.kafka010.{ConsumerStrategies, KafkaUtils, LocationStrategies}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf}
import spark.wordcount.kafkaStreams
object RemoteSubmitApp {
def main(args: Array[String]) {
// 设置提交任务的用户
System.setProperty("HADOOP_USER_NAME", "root")
val conf = new SparkConf()
.setAppName("WordCount")
// 设置yarn-client模式提交
.setMaster("yarn")
// 设置resourcemanager的ip
.set("yarn.resourcemanager.hostname","master")
// 设置executor的个数
.set("spark.executor.instance","2")
// 设置executor的内存大小
.set("spark.executor.memory", "1024M")
// 设置提交任务的yarn队列
.set("spark.yarn.queue","spark")
// 设置driver的ip地址
.set("spark.driver.host","192.168.17.1")
// 设置jar包的路径,如果有其他的依赖包,可以在这里添加,逗号隔开
.setJars(List("D:\\develop_soft\\idea_workspace_2018\\sparkdemo\\target\\sparkdemo-1.0-SNAPSHOT.jar"
))
conf.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
val scc = new StreamingContext(conf, Seconds(1))
scc.sparkContext.setLogLevel("WARN")
//scc.checkpoint("/spark/checkpoint")
val topic = "jason_flink"
val topicSet = Set(topic)
val kafkaParams = Map[String, Object](
"auto.offset.reset" -> "latest",
"value.deserializer" -> classOf[StringDeserializer]
, "key.deserializer" -> classOf[StringDeserializer]
, "bootstrap.servers" -> "master:9092,storm1:9092,storm2:9092"
, "group.id" -> "jason_"
, "enable.auto.commit" -> (true: java.lang.Boolean)
)
kafkaStreams = KafkaUtils.createDirectStream[String, String](
scc,
LocationStrategies.PreferConsistent,
ConsumerStrategies.Subscribe[String, String](topicSet, kafkaParams))
kafkaStreams.foreachRDD(rdd=> {
if (!rdd.isEmpty()) {
rdd.foreachPartition(fp=> {
fp.foreach(f=> {
println(f.value().toString)
})
})
}
})
scc.start()
scc.awaitTermination()
}
}
然后我们直接右键运行,看下打印的日志
... 19/08/16 23:17:35 INFO Client:
client token: N/A
diagnostics: AM container is launched, waiting for AM container to Register with RM
ApplicationMaster host: N/A
ApplicationMaster RPC port: -1
queue: spark
start time: 1565997454105
final status: UNDEFINED
tracking URL: http://master:8088/proxy/application_1565990507758_0020/
user: root
19/08/16 23:17:36 INFO Client: Application report for application_1565990507758_0020 (state: ACCEPTED)
19/08/16 23:17:37 INFO Client: Application report for application_1565990507758_0020 (state: ACCEPTED)
19/08/16 23:17:38 INFO Client: Application report for application_1565990507758_0020 (state: ACCEPTED)
19/08/16 23:17:39 INFO Client: Application report for application_1565990507758_0020 (state: ACCEPTED)
19/08/16 23:17:40 INFO YarnSchedulerBackend$YarnSchedulerEndpoint: ApplicationMaster registered as NettyRpcEndpointRef(spark-client://YarnAM)
19/08/16 23:17:40 INFO YarnClientSchedulerBackend: Add WebUI Filter. org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter, Map(PROXY_HOSTS -> master, PROXY_URI_BASES -> http://master:8088/proxy/application_1565990507758_0020), /proxy/application_1565990507758_0020
19/08/16 23:17:40 INFO JettyUtils: Adding filter: org.apache.hadoop.yarn.server.webproxy.amfilter.AmIpFilter
19/08/16 23:17:40 INFO Client: Application report for application_1565990507758_0020 (state: ACCEPTED)
19/08/16 23:17:41 INFO Client: Application report for application_1565990507758_0020 (state: RUNNING)
19/08/16 23:17:41 INFO Client:
client token: N/A
diagnostics: N/A
ApplicationMaster host: 192.168.17.145
ApplicationMaster RPC port: 0
queue: spark
start time: 1565997454105
final status: UNDEFINED tracking URL: http://master:8088/proxy/application_1565990507758_0020/ user: root ...
可以看到提交成功了,然后我们打开yarn的监控页面看下有没有job
可以看到有一个spark程序在运行,然后我们点进去,看下具体的运行情况
可以看到运行的正常,选择一下job,看下executor打印的日志
这个就是我们写到kafka的数据,没什么问题,停止的时候,只需要在idea里面点击停止程序就可以了,这样测试起来就会方便很多.
运行过程中可能会遇到的问题:
1,首先需要把yarn-site.xml,core-site.xml,hdfs-site.xml放到resource下面,因为程序运行的时候需要这些环境.
2,权限问题
Caused by: org.apache.hadoop.ipc.RemoteException(org.apache.hadoop.security.AccessControlException): Permission denied: user=JasonLee, access=WRITE, inode="/user":root:supergroup:drwxr-xr-x at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.check(FSPermissionChecker.java:342) at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:251)
at org.apache.hadoop.hdfs.server.namenode.FSPermissionChecker.checkPermission(FSPermissionChecker.java:189)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1744)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkPermission(FSDirectory.java:1728)
at org.apache.hadoop.hdfs.server.namenode.FSDirectory.checkAncestorAccess(FSDirectory.java:1687)
at org.apache.hadoop.hdfs.server.namenode.FSDirMkdirOp.mkdirs(FSDirMkdirOp.java:60)
at org.apache.hadoop.hdfs.server.namenode.FSNamesystem.mkdirs(FSNamesystem.java:2980)
at org.apache.hadoop.hdfs.server.namenode.NameNodeRpcServer.mkdirs(NameNodeRpcServer.java:1096)
at org.apache.hadoop.hdfs.protocolPB.ClientNamenodeProtocolServerSideTranslatorPB. mkdirs(ClientNamenodeProtocolServerSideTranslatorPB.java:652)
at org.apache.hadoop.hdfs.protocol.proto.ClientNamenodeProtocolProtos$ClientNamenodeProtocol$2. callBlockingMethod(ClientNamenodeProtocolProtos.java)
at org.apache.hadoop.ipc.ProtobufRpcEngine$Server$ProtoBufRpcInvoker.call(ProtobufRpcEngine.java:503)
at org.apache.hadoop.ipc.RPC$Server.call(RPC.java:989)
at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:868)
at org.apache.hadoop.ipc.Server$RpcCall.run(Server.java:814)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1886)
at org.apache.hadoop.ipc.Server$Handler.run(Server.java:2603)
这个是因为在本地提交的所以用户名是JasonLee,它没有访问hdfs的权限,最简单的解决方法就是在代码里面设置用户是root
System.setProperty("HADOOP_USER_NAME", "root")
3,缺失环境变量
Exception in thread "main" java.lang.IllegalStateException: Library directory 'D:\develop_soft\idea_workspace_2018\sparkdemo\assembly\target\scala-2.11\jars' does not exist; make sure Spark is built.
at org.apache.spark.launcher.CommandBuilderUtils.checkState(CommandBuilderUtils.java:248)
at org.apache.spark.launcher.CommandBuilderUtils.findJarsDir(CommandBuilderUtils.java:347)
at org.apache.spark.launcher.YarnCommandBuilderUtils$.findJarsDir(YarnCommandBuilderUtils.scala:38)
at org.apache.spark.deploy.yarn.Client.prepareLocalResources(Client.scala:526)
at org.apache.spark.deploy.yarn.Client.createContainerLaunchContext(Client.scala:814)
at org.apache.spark.deploy.yarn.Client.submitApplication(Client.scala:169)
at org.apache.spark.scheduler.cluster.YarnClientSchedulerBackend.start(YarnClientSchedulerBackend.scala:56)
at org.apache.spark.scheduler.TaskSchedulerImpl.start(TaskSchedulerImpl.scala:173)
at org.apache.spark.SparkContext.<init>(SparkContext.scala:509)
at org.apache.spark.streaming.StreamingContext$.createNewSparkContext(StreamingContext.scala:839)
at org.apache.spark.streaming.StreamingContext.<init>(StreamingContext.scala:85)
at spark.RemoteSubmitApp$.main(RemoteSubmitApp.scala:31)
at spark.RemoteSubmitApp.main(RemoteSubmitApp.scala)
这个报错是因为我们没有配置SPARK_HOME的环境变量,直接在idea里面的configurations里面的environment variables里面设置SPARK_HOME就可以了,如下图所示:
4,没有设置driver的ip
19/08/17 07:52:45 ERROR ApplicationMaster: Failed to connect to driver at 169.254.42.204:64010, retrying ...
19/08/17 07:52:48 ERROR ApplicationMaster: Failed to connect to driver at 169.254.42.204:64010, retrying ...
19/08/17 07:52:48 ERROR ApplicationMaster: Uncaught exception:
org.apache.spark.SparkException: Failed to connect to driver!
at org.apache.spark.deploy.yarn.ApplicationMaster.waitForSparkDriver(ApplicationMaster.scala:577)
at org.apache.spark.deploy.yarn.ApplicationMaster.runExecutorLauncher(ApplicationMaster.scala:433)
at org.apache.spark.deploy.yarn.ApplicationMaster.run(ApplicationMaster.scala:256)
at org.apache.spark.deploy.yarn.ApplicationMaster$$anonfun$main$1.apply$mcV$sp(ApplicationMaster.scala:764)
at org.apache.spark.deploy.SparkHadoopUtil$$anon$2.run(SparkHadoopUtil.scala:67)
at org.apache.spark.deploy.SparkHadoopUtil$$anon$2.run(SparkHadoopUtil.scala:66)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.Subject.doAs(Subject.java:422)
at org.apache.hadoop.security.UserGroupInformation.doAs(UserGroupInformation.java:1692)
at org.apache.spark.deploy.SparkHadoopUtil.runAsSparkUser(SparkHadoopUtil.scala:66)
at org.apache.spark.deploy.yarn.ApplicationMaster$.main(ApplicationMaster.scala:762)
at org.apache.spark.deploy.yarn.ExecutorLauncher$.main(ApplicationMaster.scala:785)
at org.apache.spark.deploy.yarn.ExecutorLauncher.main(ApplicationMaster.scala)
这个报错是因为没有设置driver host,因为我们运行的是yarn-client模式,driver就是我们的本机,所以要设置本地的ip,不然找不到driver.
.set("spark.driver.host","192.168.17.1")
5,还有一个就是需要保证自己的电脑和虚拟机在同一个网段内,而且要关闭自己电脑的防火墙,不然可能会出现连接不上的情况.
我是以yarn-client模式提交的,yarn分了两个队列,提交的时候需要设置下队列的名称,
还有很多参数都可以在代码里面设置,比如executor的内存,个数,
driver的内存等,大家可以根据自己的情况去设置,当然了这个也可以提交到standalone集群
来源:oschina
链接:https://my.oschina.net/u/4284005/blog/4286785