How to efficiently map over DF and use combination of outputs?

ⅰ亾dé卋堺 提交于 2020-08-06 06:56:21

问题


Given a DF, let's say I have 3 classes each with a method addCol that will use the columns in the DF to create and append a new column to the DF (based on different calculations).

What is the best way to get a resulting df that will contain the original df A and the 3 added columns?

val df = Seq((1, 2), (2,5), (3, 7)).toDF("num1", "num2")

def addCol(df: DataFrame): DataFrame = {
    df.withColumn("method1", col("num1")/col("num2"))
}
def addCol(df: DataFrame): DataFrame = {
    df.withColumn("method2", col("num1")*col("num2"))
}
def addCol(df: DataFrame): DataFrame = {
    df.withColumn("method3", col("num1")+col("num2"))
}

One option is actions.foldLeft(df) { (df, action) => action.addCol(df))}. The end result is the DF I want -- with columns num1, num2, method1, method2, and method3. But from my understanding this will not make use of distributed evaluation, and each addCol will happen sequentially. What is the more efficient way to do this?


回答1:


Efficient way to do this is using select.

select is faster than the foldLeft if you have very huge data - Check this post

You can build required expressions & use that inside select, check below code.

scala> df.show(false)
+----+----+
|num1|num2|
+----+----+
|1   |2   |
|2   |5   |
|3   |7   |
+----+----+
scala> val colExpr = Seq(
                          $"num1",
                          $"num2",
                          ($"num1"/$"num2").as("method1"),
                          ($"num1" * $"num2").as("method2"),
                          ($"num1" + $"num2").as("method3")
)

Final Output

scala> df.select(colExpr:_*).show(false)
+----+----+-------------------+-------+-------+
|num1|num2|method1            |method2|method3|
+----+----+-------------------+-------+-------+
|1   |2   |0.5                |2      |3      |
|2   |5   |0.4                |10     |7      |
|3   |7   |0.42857142857142855|21     |10     |
+----+----+-------------------+-------+-------+

Update

Return Column instead of DataFrame. Try using higher order functions, Your all three function can be replaced with below one function.

scala> def add(
               num1:Column, // May be you can try to use variable args here if you want.
               num2:Column,
               f: (Column,Column) => Column
             ): Column = f(num1,num2)

For Example, varargs & while invoking this method you need to pass required columns at the end.

def add(f: (Column,Column) => Column,cols:Column*): Column = cols.reduce(f)

Invoking add function.

scala> val colExpr = Seq(
    $"num1",
    $"num2",
    add($"num1",$"num2",(_ / _)).as("method1"),
    add($"num1", $"num2",(_ * _)).as("method2"),
    add($"num1", $"num2",(_ + _)).as("method3")
)

Final Output

scala> df.select(colExpr:_*).show(false)
+----+----+-------------------+-------+-------+
|num1|num2|method1            |method2|method3|
+----+----+-------------------+-------+-------+
|1   |2   |0.5                |2      |3      |
|2   |5   |0.4                |10     |7      |
|3   |7   |0.42857142857142855|21     |10     |
+----+----+-------------------+-------+-------+


来源:https://stackoverflow.com/questions/63026858/how-to-efficiently-map-over-df-and-use-combination-of-outputs

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!