医学多模态图像分割小结

不问归期 提交于 2020-07-28 20:32:52
在医学图象中,多模态数据因成像机理不同而能从多种层面提供信息。多模态图像分割包含重点问题为如何融合(fusion)不同模态间信息,本文主要记录笔者最近所读,欢迎批评指正补充

1. A review: Deep learning for medical image segmentation using multi-modality fusion (Array 2019)***

融合策略分类

综述,按照方法的位置将融合策略分为三大类:Input-level, Layer-level, Decision-level.

数据集:

几种多模态数据集

2. Co-Learning Feature Fusion Maps from PET-CT Images of Lung Cancer (TMI 2019)****

Abstract : Layer-level fusion, U-net, PET-CT, Lung cancer

Method : 对CT与PET各一个encoder,不同层feature stack后经conv得到权重,与concat后的feature点积,得加权feature map。


Experiment : 肺癌数据,对比layer-level fusion : MB(multi-branch), MC(multi-channel), FS(fused),效果不错。

3. 3D FULLY CONVOLUTIONAL NETWORKS FOR CO-SEGMENTATION OF TUMORS ON PET-CT IMAGES (ISBI 2018)**

Abstract : Decision-level, Unet, Graph cut, PET-CT, Lung cancer

Method : CT, PET独立的Net,各输出概率图后Graph Cut。

Experiment : 肺癌数据,对比graph-cut。

4. HyperDense-Net: A hyper-densely connected CNN for multi-modal image segmentation (TMI 2019) ****

Abstract : Layer-level, DenseNet, MRI, Brain

Method : modality各一个net, 中间层相互dense连接。

Experiment : Brain(iseg-2017, MRBrainS),对比layer level fusion : Single Dense Path, Dual Dense Path, Disentangled modalities with early fusion。各模态先经卷积再拼接相比直接双通道输入有较明显提升。

5. Deep learning for automatic tumour segmentation in PET/CT images of patients with head and neck cancers (MIDL 2019) *

Abstract : Input-level, Unet, Pet-CT, head and neck

Method : 2通道输入

Experiment :头颈部肿瘤, 对比单模态Unet,是HECKTOR比赛数据来源。

6. Tumor co-segmentation in PET/CT using multi-modality fully convolutional neural network (Physics in Medicine & Biology 2019) **

Abstract : Layer-level, V-net, Pet-CT, Lung cancer

Method : 2个V-net 先分别提取PET/CT feature,sum后经4层卷积得result. 提出weighted cross entropy loss以balance不同模态影响。

Experiment : 肺癌数据,对比其它几种fusion方法,传统方法,单模态V-net。


欢迎评论与补充相关的论文~

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!