Custom loss function in Keras

廉价感情. 提交于 2019-11-27 19:00:32

All you have to do is define a function for that, using keras backend functions for calculations. The function must take the true values and the model predicted values.

Now, since I'm not sure about what are g, q, x an y in your function, I'll just create a basic example here without caring about what it means or whether it's an actual useful function:

import keras.backend as K

def customLoss(yTrue,yPred):
    return K.sum(K.log(yTrue) - K.log(yPred))

All backend functions can be seen here: https://keras.io/backend/

After that, compile your model using that function instead of a regular one:

model.compile(loss=customLoss, optimizer = .....)
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!