问题
I have a PySpark dataframe with this schema:
root
|-- epoch: double (nullable = true)
|-- var1: double (nullable = true)
|-- var2: double (nullable = true)
Where epoch is in seconds and should be converted to date time. In order to do so, I define a user defined function (udf) as follows:
from pyspark.sql.functions import udf
import time
def epoch_to_datetime(x):
return time.localtime(x)
# return time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(x))
# return x * 0 + 1
epoch_to_datetime_udf = udf(epoch_to_datetime, DoubleType())
df.withColumn("datetime", epoch_to_datetime(df2.epoch)).show()
I get this error:
---> 21 return time.localtime(x)
22 # return x * 0 + 1
23
TypeError: a float is required
If I simply return x + 1
in the function, it works. Trying float(x)
or float(str(x))
or numpy.float(x)
in time.localtime(x)
does not help and I still get an error. Outside of udf
, time.localtime(1.514687216E9)
or other numbers works fine. Using datetime
package to convert epoch
to datetim results in similar errors.
It seems that time
and datetime
packages do not like to fed with DoubleType
from PySpark. Any ideas how I can solve this issue? Thanks.
回答1:
You don't need a udf
function for that
All you need is to cast the double epoch column to timestampType()
and then use data_format
function as below
from pyspark.sql import functions as f
from pyspark.sql import types as t
df.withColumn('epoch', f.date_format(df.epoch.cast(dataType=t.TimestampType()), "yyyy-MM-dd"))
this will give you a string date
root
|-- epoch: string (nullable = true)
|-- var1: double (nullable = true)
|-- var2: double (nullable = true)
And you can use to_date
function as following
from pyspark.sql import functions as f
from pyspark.sql import types as t
df.withColumn('epoch', f.to_date(df.epoch.cast(dataType=t.TimestampType())))
which would give you date
as datatype
to epoch
column
root
|-- epoch: date (nullable = true)
|-- var1: double (nullable = true)
|-- var2: double (nullable = true)
I hope the answer is helpful
回答2:
Ramesh Maharjan's Answer does not support getting milliseconds or microseconds in Timestamp. The updated answer to add support for milliseconds is as follows:
Implementing the approach suggested in Dao Thi's answer
import pyspark.sql.functions as F
df = spark.createDataFrame([('22-Jul-2018 04:21:18.792 UTC', ),('23-Jul-2018 04:21:25.888 UTC',)], ['TIME'])
df.show(2,False)
df.printSchema()
Output:
+----------------------------+
|TIME |
+----------------------------+
|22-Jul-2018 04:21:18.792 UTC|
|23-Jul-2018 04:21:25.888 UTC|
+----------------------------+
root
|-- TIME: string (nullable = true)
Converting string time-format (including milliseconds ) to unix_timestamp(double). Extracting milliseconds from string using substring method (start_position = -7, length_of_substring=3) and Adding milliseconds seperately to unix_timestamp. (Cast to substring to float for adding)
df1 = df.withColumn("unix_timestamp",F.unix_timestamp(df.TIME,'dd-MMM-yyyy HH:mm:ss.SSS z') + F.substring(df.TIME,-7,3).cast('float')/1000)
Converting unix_timestamp(double) to timestamp datatype in Spark.
df2 = df1.withColumn("TimestampType",F.to_timestamp(df1["unix_timestamp"]))
df2.show(n=2,truncate=False)
This will give you following output
+----------------------------+----------------+-----------------------+
|TIME |unix_timestamp |TimestampType |
+----------------------------+----------------+-----------------------+
|22-Jul-2018 04:21:18.792 UTC|1.532233278792E9|2018-07-22 04:21:18.792|
|23-Jul-2018 04:21:25.888 UTC|1.532319685888E9|2018-07-23 04:21:25.888|
+----------------------------+----------------+-----------------------+
Checking the Schema:
df2.printSchema()
root
|-- TIME: string (nullable = true)
|-- unix_timestamp: double (nullable = true)
|-- TimestampType: timestamp (nullable = true)
来源:https://stackoverflow.com/questions/49971903/converting-epoch-to-datetime-in-pyspark-data-frame-using-udf