RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same

谁说我不能喝 提交于 2020-06-22 11:11:27

问题


I am trying to train the following CNN as follows, but I keep getting the same error regarding .cuda() and I am not sure how to fix it. Here is a chunk of my code so far.

import matplotlib.pyplot as plt
import numpy as np
import torch
from torch import nn
from torch import optim
import torch.nn.functional as F
import torchvision
from torchvision import datasets, transforms, models
from torch.utils.data.sampler import SubsetRandomSampler


data_dir = "/home/ubuntu/ML2/ExamII/train2/"
valid_size = .2

# Normalize the test and train sets with torchvision
train_transforms = transforms.Compose([transforms.Resize(224),
                                           transforms.ToTensor(),
                                           ])

test_transforms = transforms.Compose([transforms.Resize(224),
                                          transforms.ToTensor(),
                                          ])

# ImageFolder class to load the train and test images
train_data = datasets.ImageFolder(data_dir, transform=train_transforms)
test_data = datasets.ImageFolder(data_dir, transform=test_transforms)


# Number of train images
num_train = len(train_data)
indices = list(range(num_train))
# Split = 20% of train images
split = int(np.floor(valid_size * num_train))
# Shuffle indices of train images
np.random.shuffle(indices)
# Subset indices for test and train
train_idx, test_idx = indices[split:], indices[:split]
# Samples elements randomly from a given list of indices
train_sampler = SubsetRandomSampler(train_idx)
test_sampler = SubsetRandomSampler(test_idx)
# Batch and load the images
trainloader = torch.utils.data.DataLoader(train_data, sampler=train_sampler, batch_size=1)
testloader = torch.utils.data.DataLoader(test_data, sampler=test_sampler, batch_size=1)


#print(trainloader.dataset.classes)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = models.resnet50(pretrained=True)

model.fc = nn.Sequential(nn.Linear(2048, 512),
                                 nn.ReLU(),
                                 nn.Dropout(0.2),
                                 nn.Linear(512, 10),
                                 nn.LogSigmoid())
                                 # nn.LogSoftmax(dim=1))
# criterion = nn.NLLLoss()
criterion = nn.BCELoss()
optimizer = optim.Adam(model.fc.parameters(), lr=0.003)
model.to(device)

#Train the network
for epoch in range(2):  # loop over the dataset multiple times

    running_loss = 0.0
    for i, data in enumerate(trainloader, 0):
        # get the inputs; data is a list of [inputs, labels]
        inputs, labels = data

        # zero the parameter gradients
        optimizer.zero_grad()

        # forward + backward + optimize
        outputs = model(inputs)
        loss = criterion(outputs, labels)
        loss.backward()
        optimizer.step()

        # print statistics
        running_loss += loss.item()
        if i % 2000 == 1999:    # print every 2000 mini-batches
            print('[%d, %5d] loss: %.3f' %
                  (epoch + 1, i + 1, running_loss / 2000))
            running_loss = 0.0

print('Finished Training')

However, I keep getting this error in the console:

RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same`

Any thoughts on how to fix it? I read that maybe the model hasn't been pushed into my GPU, but not sure how to fix it. Thanks!


回答1:


You get this error because your model is on the GPU, but your data is on the CPU. So, you need to send your input tensors to the GPU.

inputs, labels = data                         # this is what you had
inputs, labels = inputs.cuda(), labels.cuda() # add this line

Or like this, to stay consistent with the rest of your code:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

inputs, labels = inputs.to(device), labels.to(device)

The same error will be raised if your input tensors are on the GPU but your model weights aren't. In this case, you need to send your model weights to the GPU.

model = MyModel()

if torch.cuda.is_available():
    model.cuda()

Here is the documentation for cuda() and cpu(), its opposite.




回答2:


First check cuda is available or not:

  if torch.cuda.is_available():
      device = 'cuda'
  else:
      device = 'cpu'

In case you want to load some model do this:

  checkpoint = torch.load('./generator_release.pth', map_location=device)
  G = Generator().to(device)

Now you probably get this error:

RuntimeError: Input type (torch.FloatTensor) and weight type (torch.cuda.FloatTensor) should be the same

It is needed to convert the type of input data from torch.tensor to torch.cuda.tensor by :

if torch.cuda.is_available():
  data = data.cuda()
result = G(data)

and then convert the result from torch.cuda.tensor to torch.tensor:

if torch.cuda.is_available():
    result = result.cpu()


来源:https://stackoverflow.com/questions/59013109/runtimeerror-input-type-torch-floattensor-and-weight-type-torch-cuda-floatte

易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!