transitive reduction algorithm: pseudocode?

我与影子孤独终老i 提交于 2019-11-27 18:45:35

See Harry Hsu. "An algorithm for finding a minimal equivalent graph of a digraph.", Journal of the ACM, 22(1):11-16, January 1975. The simple cubic algorithm below (using an N x N path matrix) suffices for DAGs, but Hsu generalizes it to cyclic graphs.

// reflexive reduction
for (int i = 0; i < N; ++i)
  m[i][i] = false;

// transitive reduction
for (int j = 0; j < N; ++j)
  for (int i = 0; i < N; ++i)
    if (m[i][j])
      for (int k = 0; k < N; ++k)
        if (m[j][k])
          m[i][k] = false;

The basic gist of the transitive reduction algorithm I used is


foreach x in graph.vertices
   foreach y in graph.vertices
      foreach z in graph.vertices
         delete edge xz if edges xy and yz exist

The transitive closure algorithm I used in the same script is very similar but the last line is


         add edge xz if edges xy and yz OR edge xz exist

The Wikipedia article on transitive reduction points to an implementation within GraphViz (which is open source). Not exactly pseudocode, but maybe someplace to start?

LEDA includes a transitive reduction algorithm. I don't have a copy of the LEDA book anymore, and this function might have been added after the book was published. But if it's in there, then there will be a good description of the algorithm.

Google points to an algorithm that somebody suggested for inclusion in Boost. I didn't try to read it, so maybe not correct?

Also, this might be worth a look.

The algorithm of "girlwithglasses" forgets that a redundant edge could span a chain of three edges. To correct, compute Q = R x R+ where R+ is the transitive closure and then delete all edges from R that show up in Q. See also the Wikipedia article.

Based on the reference provided by Alan Donovan, which says you should use the path matrix (which has a 1 if there is a path from node i to node j) instead of the adjacency matrix (which has a 1 only if there is an edge from node i to node j).

Some sample python code follows below to show the differences between the solutions

def prima(m, title=None):
    """ Prints a matrix to the terminal """
    if title:
        print title
    for row in m:
        print ', '.join([str(x) for x in row])
    print ''

def path(m):
    """ Returns a path matrix """
    p = [list(row) for row in m]
    n = len(p)
    for i in xrange(0, n):
        for j in xrange(0, n):
            if i == j:
                continue
            if p[j][i]:
                for k in xrange(0, n):
                    if p[j][k] == 0:
                        p[j][k] = p[i][k]
    return p

def hsu(m):
    """ Transforms a given directed acyclic graph into its minimal equivalent """
    n = len(m)
    for j in xrange(n):
        for i in xrange(n):
            if m[i][j]:
                for k in xrange(n):
                    if m[j][k]:
                        m[i][k] = 0

m = [   [0, 1, 1, 0, 0],
        [0, 0, 0, 0, 0],
        [0, 0, 0, 1, 1],
        [0, 0, 0, 0, 1],
        [0, 1, 0, 0, 0]]

prima(m, 'Original matrix')
hsu(m)
prima(m, 'After Hsu')

p = path(m)
prima(p, 'Path matrix')
hsu(p)
prima(p, 'After Hsu')

Output:

Adjacency matrix
0, 1, 1, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 1, 1
0, 0, 0, 0, 1
0, 1, 0, 0, 0

After Hsu
0, 1, 1, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 1, 0
0, 0, 0, 0, 1
0, 1, 0, 0, 0

Path matrix
0, 1, 1, 1, 1
0, 0, 0, 0, 0
0, 1, 0, 1, 1
0, 1, 0, 0, 1
0, 1, 0, 0, 0

After Hsu
0, 0, 1, 0, 0
0, 0, 0, 0, 0
0, 0, 0, 1, 0
0, 0, 0, 0, 1
0, 1, 0, 0, 0

Depth-first algorithm in pseudo-python:

for vertex0 in vertices:
    done = set()
    for child in vertex0.children:
        df(edges, vertex0, child, done)

df = function(edges, vertex0, child0, done)
    if child0 in done:
        return
    for child in child0.children:
        edge.discard((vertex0, child))
        df(edges, vertex0, child, done)
    done.add(child0)

The algorithm is sub-optimal, but deals with the multi-edge-span problem of the previous solutions. The results are very similar to what tred from graphviz produces.

ported to java / jgrapht, the python sample on this page from @Michael Clerx:

import java.util.ArrayList;
import java.util.List;
import java.util.Set;

import org.jgrapht.DirectedGraph;

public class TransitiveReduction<V, E> {

    final private List<V> vertices;
    final private int [][] pathMatrix;

    private final DirectedGraph<V, E> graph;

    public TransitiveReduction(DirectedGraph<V, E> graph) {
        super();
        this.graph = graph;
        this.vertices = new ArrayList<V>(graph.vertexSet());
        int n = vertices.size();
        int[][] original = new int[n][n];

        // initialize matrix with zeros
        // --> 0 is the default value for int arrays

        // initialize matrix with edges
        Set<E> edges = graph.edgeSet();
        for (E edge : edges) {
            V v1 = graph.getEdgeSource(edge);
            V v2 = graph.getEdgeTarget(edge);

            int v_1 = vertices.indexOf(v1);
            int v_2 = vertices.indexOf(v2);

            original[v_1][v_2] = 1;
        }

        this.pathMatrix = original;
        transformToPathMatrix(this.pathMatrix);
    }

    // (package visible for unit testing)
    static void transformToPathMatrix(int[][] matrix) {
        // compute path matrix 
        for (int i = 0; i < matrix.length; i++) {
            for (int j = 0; j < matrix.length; j++) { 
                if (i == j) {
                    continue;
                }
                if (matrix[j][i] > 0 ){
                    for (int k = 0; k < matrix.length; k++) {
                        if (matrix[j][k] == 0) {
                            matrix[j][k] = matrix[i][k];
                        }
                    }
                }
            }
        }
    }

    // (package visible for unit testing)
    static void transitiveReduction(int[][] pathMatrix) {
        // transitively reduce
        for (int j = 0; j < pathMatrix.length; j++) { 
            for (int i = 0; i < pathMatrix.length; i++) {
                if (pathMatrix[i][j] > 0){
                    for (int k = 0; k < pathMatrix.length; k++) {
                        if (pathMatrix[j][k] > 0) {
                            pathMatrix[i][k] = 0;
                        }
                    }
                }
            }
        }
    }

    public void reduce() {

        int n = pathMatrix.length;
        int[][] transitivelyReducedMatrix = new int[n][n];
        System.arraycopy(pathMatrix, 0, transitivelyReducedMatrix, 0, pathMatrix.length);
        transitiveReduction(transitivelyReducedMatrix);

        for (int i = 0; i <n; i++) {
            for (int j = 0; j < n; j++) { 
                if (transitivelyReducedMatrix[i][j] == 0) {
                    // System.out.println("removing "+vertices.get(i)+" -> "+vertices.get(j));
                    graph.removeEdge(graph.getEdge(vertices.get(i), vertices.get(j)));
                }
            }
        }
    }
}

unit test :

import java.util.Arrays;

import org.junit.Assert;
import org.junit.Test;

public class TransitiveReductionTest {

    @Test
    public void test() {

        int[][] matrix = new int[][] {
            {0, 1, 1, 0, 0},
            {0, 0, 0, 0, 0},
            {0, 0, 0, 1, 1},
            {0, 0, 0, 0, 1},
            {0, 1, 0, 0, 0}
        };

        int[][] expected_path_matrix = new int[][] {
            {0, 1, 1, 1, 1},
            {0, 0, 0, 0, 0},
            {0, 1, 0, 1, 1},
            {0, 1, 0, 0, 1},
            {0, 1, 0, 0, 0}
        };

        int[][] expected_transitively_reduced_matrix = new int[][] {
            {0, 0, 1, 0, 0},
            {0, 0, 0, 0, 0},
            {0, 0, 0, 1, 0},
            {0, 0, 0, 0, 1},
            {0, 1, 0, 0, 0}
        };

        System.out.println(Arrays.deepToString(matrix) + " original matrix");

        int n = matrix.length;

        // calc path matrix
        int[][] path_matrix = new int[n][n];
        {
            System.arraycopy(matrix, 0, path_matrix, 0, matrix.length);

            TransitiveReduction.transformToPathMatrix(path_matrix);
            System.out.println(Arrays.deepToString(path_matrix) + " path matrix");
            Assert.assertArrayEquals(expected_path_matrix, path_matrix);
        }

        // calc transitive reduction
        {
            int[][] transitively_reduced_matrix = new int[n][n];
            System.arraycopy(path_matrix, 0, transitively_reduced_matrix, 0, matrix.length);

            TransitiveReduction.transitiveReduction(transitively_reduced_matrix);
            System.out.println(Arrays.deepToString(transitively_reduced_matrix) + " transitive reduction");
            Assert.assertArrayEquals(expected_transitively_reduced_matrix, transitively_reduced_matrix);
        }
    }
}

test ouput

[[0, 1, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 1, 1], [0, 0, 0, 0, 1], [0, 1, 0, 0, 0]] original matrix
[[0, 1, 1, 1, 1], [0, 0, 0, 0, 0], [0, 1, 0, 1, 1], [0, 1, 0, 0, 1], [0, 1, 0, 0, 0]] path matrix
[[0, 0, 1, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 1, 0], [0, 0, 0, 0, 1], [0, 1, 0, 0, 0]] transitive reduction
易学教程内所有资源均来自网络或用户发布的内容,如有违反法律规定的内容欢迎反馈
该文章没有解决你所遇到的问题?点击提问,说说你的问题,让更多的人一起探讨吧!